我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

我参加这个聚会迟到了,现在可能是墓地了。但我有两个贡献,灵感来自viraptor先前使用lambda的Python答案。读者可能认为该解决方案仅在非类型化语言中可行,而在类型化语言中将需要一些明确的额外标记。

但下面是Haskell中的解决方案1(我不是Haskell专家)。它有点作弊,因为从技术上讲,两个f是两个不同的实现。(一个f::Int->()->Int,另一个f::(()->Int)->Int)

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FunctionalDependencies #-}

module Main where

class Tran σ τ | σ -> τ where
  tran :: σ -> τ

instance Tran Int (() -> Int) where
  tran n = \_ -> (-n)

instance Tran (() -> Int) Int where
  tran g = g ()

f :: Tran σ τ => σ -> τ
f = tran

main :: IO ()
main = do
  print $ f (f (42 :: Int)) -- --> -42
  print $ f (f (0 :: Int)) -- --> 0
  print $ f (f (-69 :: Int)) -- --> 69

接下来是Typed Racket中的解决方案2。这一个满足了最大可能域的属性,因为Racket中的Number最多包含复数:

#lang typed/racket

(: f (case->
      [Number -> (-> Number)]
      [(-> Number) -> Number]))
(define (f x)
  (if (number? x) (λ () (- x)) (x)))

(f (f 42))    ; --> -42
(f (f 0))     ; --> 0
(f (f -69))   ; --> 69
(f (f 3/4))   ; --> -3/4
(f (f 8+7i))  ; --> -8-7i

其他回答

int f(int n)
{
   static int x = 0;
   result = -x;
   x = n;
   return result;
}

这是一个带有否定的单条目FIFO。当然,它不适用于最大负数。

int f( int n ){
    return n==0?0:(n&1?n:-n)+(n<0?-1:1);
}

使用全局。。。但事实如此?

bool done = false
f(int n)
{
  int out = n;
  if(!done)
  {  
      out = n * -1;
      done = true;
   }
   return out;
}

根据您的平台,某些语言允许您在函数中保持状态。VB.Net,例如:

Function f(ByVal n As Integer) As Integer
    Static flag As Integer = -1
    flag *= -1

    Return n * flag
End Function

IIRC、C++也允许这样做。我怀疑他们正在寻找不同的解决方案。

另一个想法是,由于它们没有定义函数第一次调用的结果,因此可以使用奇数/均匀度来控制是否反转符号:

int f(int n)
{
   int sign = n>=0?1:-1;
   if (abs(n)%2 == 0)
      return ((abs(n)+1)*sign * -1;
   else
      return (abs(n)-1)*sign;
}

所有偶数的幅度加一,所有奇数的幅度减一。两次调用的结果大小相同,但在一次调用中,我们甚至交换了符号。在某些情况下,这不会起作用(-1,max或min int),但它的效果比迄今为止任何其他建议都要好得多。

这是rossfabricant答案的C实现。注意,由于我始终使用32位整数,f(f(2147483647))==2147483648,而不是-2147483647。

int32_t f( int32_t n )
{
    if( n == 0 ) return 0;
    switch( n & 0x80000001 ) {
        case 0x00000000:
            return -1 * ( n - 1 );
        case 0x00000001:
            return n + 1;
        case 0x80000000:
            return -1 * ( n + 1 );
        default:
            return n - 1;
    }
}

如果您将问题定义为允许f()接受并返回int64_t,则会涉及2147483647。当然,switch语句中使用的文字必须更改。