我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
我参加这个聚会迟到了,现在可能是墓地了。但我有两个贡献,灵感来自viraptor先前使用lambda的Python答案。读者可能认为该解决方案仅在非类型化语言中可行,而在类型化语言中将需要一些明确的额外标记。
但下面是Haskell中的解决方案1(我不是Haskell专家)。它有点作弊,因为从技术上讲,两个f是两个不同的实现。(一个f::Int->()->Int,另一个f::(()->Int)->Int)
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FunctionalDependencies #-}
module Main where
class Tran σ τ | σ -> τ where
tran :: σ -> τ
instance Tran Int (() -> Int) where
tran n = \_ -> (-n)
instance Tran (() -> Int) Int where
tran g = g ()
f :: Tran σ τ => σ -> τ
f = tran
main :: IO ()
main = do
print $ f (f (42 :: Int)) -- --> -42
print $ f (f (0 :: Int)) -- --> 0
print $ f (f (-69 :: Int)) -- --> 69
接下来是Typed Racket中的解决方案2。这一个满足了最大可能域的属性,因为Racket中的Number最多包含复数:
#lang typed/racket
(: f (case->
[Number -> (-> Number)]
[(-> Number) -> Number]))
(define (f x)
(if (number? x) (λ () (- x)) (x)))
(f (f 42)) ; --> -42
(f (f 0)) ; --> 0
(f (f -69)) ; --> 69
(f (f 3/4)) ; --> -3/4
(f (f 8+7i)) ; --> -8-7i
其他回答
这个Perl解决方案适用于整数、浮点数和字符串。
sub f {
my $n = shift;
return ref($n) ? -$$n : \$n;
}
尝试一些测试数据。
print $_, ' ', f(f($_)), "\n" for -2, 0, 1, 1.1, -3.3, 'foo' '-bar';
输出:
-2 2
0 0
1 -1
1.1 -1.1
-3.3 3.3
foo -foo
-bar +bar
我认为这些问题的答案最好用图表直观地解释。当我们忽略零时,我们可以将整数分成4个数的小集合:
1 → 2 3 → 4 5 → 6
↑ ↓ ↑ ↓ ↑ ↓ ...
-2 ← -1 -4 ← -3 -6 ← -5
这很容易翻译成代码。注意,偶数改变符号,奇数增加或减少1。在C#中,它看起来像这样:
public static int f(int x)
{
if(x == 0)
return 0;
if(x > 0)
return (x % 2 == 0) ? -x+1 : x+1;
// we know x is negative at this point
return (x % 2 == 0) ? -x-1 : x-1;
}
当然,您可以通过使用巧妙的技巧来缩短此方法,但我认为这段代码最好地解释了它本身。
然后是范围。32位整数的范围从-2^31到2^31-1。数字2^31-1、-2^31-1和-2^31超出了f(x)的范围,因为缺少数字2^31。
我想我会先不看别人的答案就试试这个:
#include <stdio.h> #include <limits.h> #include <stdlib.h> int f(int n) { if(n > 0) { if(n % 2) return -(++n); else { return (--n); } } else { if(n % 2) return -(--n); else { return (++n); } } } int main(int argc, char* argv[]) { int n; for(n = INT_MIN; n < INT_MAX; n++) { int N = f(f(n)); if(N != -n) { fprintf(stderr, "FAIL! %i != %i\n", N, -n); } } n = INT_MAX; int N = f(f(n)); if(N != -n) { fprintf(stderr, "FAIL! n = %i\n", n); } return 0; }
输出:[无]
这个怎么样?
int nasty(int input)
{
return input + INT_MAX/2;
}
由于C++中的重载:
double f(int var)
{
return double(var);
}
int f(double var)
{
return -int(var);
}
int main(){
int n(42);
std::cout<<f(f(n));
}