我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

另一个作弊解决方案。我们使用允许运算符重载的语言。然后我们让f(x)返回重载==的值,以始终返回true。这似乎与问题描述相符,但显然违背了谜题的精神。

Ruby示例:

class Cheat
  def ==(n)
     true
  end
end

def f(n)
  Cheat.new
end

这给了我们:

>> f(f(1)) == -1
=> true

而且(不太令人惊讶)

>> f(f(1)) == "hello world"
=> true

其他回答

Clojure解决方案:

(defmacro f [n]
  (if (list? n) `(- ~n) n))

也适用于任何大小的正整数和负整数、双整数和比率!

我参加这个聚会迟到了,现在可能是墓地了。但我有两个贡献,灵感来自viraptor先前使用lambda的Python答案。读者可能认为该解决方案仅在非类型化语言中可行,而在类型化语言中将需要一些明确的额外标记。

但下面是Haskell中的解决方案1(我不是Haskell专家)。它有点作弊,因为从技术上讲,两个f是两个不同的实现。(一个f::Int->()->Int,另一个f::(()->Int)->Int)

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FunctionalDependencies #-}

module Main where

class Tran σ τ | σ -> τ where
  tran :: σ -> τ

instance Tran Int (() -> Int) where
  tran n = \_ -> (-n)

instance Tran (() -> Int) Int where
  tran g = g ()

f :: Tran σ τ => σ -> τ
f = tran

main :: IO ()
main = do
  print $ f (f (42 :: Int)) -- --> -42
  print $ f (f (0 :: Int)) -- --> 0
  print $ f (f (-69 :: Int)) -- --> 69

接下来是Typed Racket中的解决方案2。这一个满足了最大可能域的属性,因为Racket中的Number最多包含复数:

#lang typed/racket

(: f (case->
      [Number -> (-> Number)]
      [(-> Number) -> Number]))
(define (f x)
  (if (number? x) (λ () (- x)) (x)))

(f (f 42))    ; --> -42
(f (f 0))     ; --> 0
(f (f -69))   ; --> 69
(f (f 3/4))   ; --> -3/4
(f (f 8+7i))  ; --> -8-7i
void f(int x)
{
     Console.WriteLine(string.Format("f(f({0})) == -{0}",x));
}

抱歉,伙计们。。。这太诱人了;)

x86 asm(AT&T风格):

; input %edi
; output %eax
; clobbered regs: %ecx, %edx
f:
    testl   %edi, %edi
    je  .zero

    movl    %edi, %eax
    movl    $1, %ecx
    movl    %edi, %edx
    andl    $1, %eax
    addl    %eax, %eax
    subl    %eax, %ecx
    xorl    %eax, %eax
    testl   %edi, %edi
    setg    %al
    shrl    $31, %edx
    subl    %edx, %eax
    imull   %ecx, %eax
    subl    %eax, %edi
    movl    %edi, %eax
    imull   %ecx, %eax
.zero:
    xorl    %eax, %eax
    ret

代码已检查,所有可能的32位整数都已通过,错误为-2147483647(下溢)。

const unsigned long Magic = 0x8000000;

unsigned long f(unsigned long n)
{    
    if(n > Magic )
    {
        return Magic - n;
    }

    return n + Magic;
} 

0~2^31