我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

#include <cmath>

int f(int n)
{
    static int count = 0;
    return ::cos(M_PI * count++) * n;
}

其他回答

MIN_INT不会失败:

int f(n) { return n < 0 ? -abs(n + 1) : -(abs(n) + 1); }

这个怎么样?

int nasty(int input)
{
    return input + INT_MAX/2;
}

对于所有32位值(注意,-0是-2147483648)

int rotate(int x)
{
    static const int split = INT_MAX / 2 + 1;
    static const int negativeSplit = INT_MIN / 2 + 1;

    if (x == INT_MAX)
        return INT_MIN;
    if (x == INT_MIN)
        return x + 1;

    if (x >= split)
        return x + 1 - INT_MIN;
    if (x >= 0)
        return INT_MAX - x;
    if (x >= negativeSplit)
        return INT_MIN - x + 1;
    return split -(negativeSplit - x);
}

基本上需要将每个-x=>x=>-x循环与y=>-y=>y循环配对。所以我把裂口的两边配对。

例如,对于4位整数:

0 => 7 => -8 => -7 => 0
1 => 6 => -1 => -6 => 1
2 => 5 => -2 => -5 => 2
3 => 4 => -3 => -4 => 3

它通过保存状态来作弊,但它有效,将操作分成两部分:-n=(~n+1)对于整数

int f(int n) {
    static int a = 1;
    a = !a;
    if (a) {
        return (~n);
    } else {
        return (n+1);
    }
}

或者,您可以滥用预处理器:

#define f(n) (f##n)
#define ff(n) -n

int main()
{
  int n = -42;
  cout << "f(f(" << n << ")) = " << f(f(n)) << endl;
}