我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
#include <cmath>
int f(int n)
{
static int count = 0;
return ::cos(M_PI * count++) * n;
}
其他回答
int f(const int n) {
static int last_n;
if (n == 0)
return 0;
else if (n == last_n)
return -n;
else
{
last_n = n;
return n;
}
}
哈克,但正确。
这个怎么样:
do
local function makeFunc()
local var
return function(x)
if x == true then
return -var
else
var = x
return true
end
end
end
f = makeFunc()
end
print(f(f(20000)))
Python 2.6:
f = lambda n: (n % 2 * n or -n) + (n > 0) - (n < 0)
我意识到这对讨论毫无帮助,但我无法抗拒。
用咖啡脚本打高尔夫:
f = (n)-> -n[0] or [n]
Clojure解决方案:
(defmacro f [n] (if (list? n) `(- ~n) n))
也适用于任何大小的正整数和负整数、双整数和比率!