我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

#include <cmath>

int f(int n)
{
    static int count = 0;
    return ::cos(M_PI * count++) * n;
}

其他回答

在Python中

f=lambda n:n[0]if type(n)is list else[-n]

看起来很简单。

<script type="text/javascript">
function f(n){
    if (typeof n === "string") {
        return parseInt(n, 10)
    }
    return (-n).toString(10);
}

alert(f(f(1)));
</script>

这个怎么样?

int nasty(int input)
{
    return input + INT_MAX/2;
}

C++中的另一个作弊解决方案是运算符重载。

struct func {
    int n;
    func operator()(int k) { n = -k; return *this; }
    int operator()(const func &inst) { return inst.n; }
} f;

这将在非常广泛的数字范围内发挥作用:

    static int f(int n)
    {
        int lastBit = int.MaxValue;
        lastBit++;
        int secondLastBit = lastBit >> 1;
        int tuple = lastBit | secondLastBit;
        if ((n & tuple) == tuple)
            return n + lastBit;
        if ((n & tuple) == 0)
            return n + lastBit;
        return -(n + lastBit);
    }

我最初的方法是使用最后一位作为检查位,以了解我们在第一次或第二次调用中的位置。基本上,我会在第一次调用后将此位设置为1,以向第二次调用发出第一次调用已经通过的信号。但是,这种方法被负数所击败,负数的最后一位在第一次调用期间已经到达1。

同样的理论适用于大多数负数的倒数第二位。但是,通常发生的情况是,大多数情况下,最后一位和第二位是相同的。它们要么都是负数的1,要么都是正数的0。

所以我的最后一个方法是检查它们是否都是1或都是0,这意味着在大多数情况下这是第一次调用。如果最后一位与第二个最后一位不同,那么我假设我们在第二次调用,然后简单地重新反转最后一位。显然,对于使用最后两位的非常大的数字来说,这不起作用。但是,它再次适用于非常广泛的数字。