我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

用咖啡脚本打高尔夫:

f = (n)-> -n[0] or [n]

其他回答

C#表示2^32-1个数字的范围,所有整数32(int32.MinValue除外)

    Func<int, int> f = n =>
        n < 0
           ? (n & (1 << 30)) == (1 << 30) ? (n ^ (1 << 30)) : - (n | (1 << 30))
           : (n & (1 << 30)) == (1 << 30) ? -(n ^ (1 << 30)) : (n | (1 << 30));

    Console.WriteLine(f(f(Int32.MinValue + 1))); // -2147483648 + 1
    for (int i = -3; i <= 3  ; i++)
        Console.WriteLine(f(f(i)));
    Console.WriteLine(f(f(Int32.MaxValue))); // 2147483647

打印:

2147483647
3
2
1
0
-1
-2
-3
-2147483647

下面是一个简短的Python答案:

def f(n):
  m = -n if n % 2 == 0 else n
  return m + sign(n)

一般情况

稍微调整一下上面的内容就可以处理我们希望k个自调用否定输入的情况——例如,如果k=3,这意味着g(g(g)n))=-n:

def g(n):
  if n % k: return n + sign(n)
  return -n + (k - 1) * sign(n)

这是通过将0保留在适当位置并创建长度为2*k的循环来实现的,因此,在任何循环中,n和-n之间的距离为k。具体来说,每个周期如下:

N * k + 1, N * k + 2, ... , N * k + (k - 1), - N * k - 1, ... , - N * k - (k - 1)

或者,为了更容易理解,这里是k=3的示例循环:

1, 2, 3, -1, -2, -3
4, 5, 6, -4, -5, -6

这组循环最大化了在任何以零为中心的机器类型(如有符号int32或有符号int64类型)内工作的输入范围。

兼容范围分析

映射x->f(x)实际上必须形成长度为2*k的循环,其中x=0是特殊情况下的1-长度循环,因为-0=0。因此,一般k的问题是可解的,当且仅当输入-1(补偿0)的范围是2*k的倍数,并且正负范围是相反的。

对于有符号整数表示,我们总是有一个最小的负数,在该范围内没有正的对应项,因此该问题在整个范围内变得不可解决。例如,有符号字符的范围为[-128127],因此在给定范围内f(f(-128))=128是不可能的。

将n转换为符号和幅度表示;添加范围的1/4;转换回。


    #define STYPE int
    STYPE sign_bit = (unsigned STYPE) 1 << ( sizeof ( STYPE ) * 8  - 1 );
    STYPE f ( STYPE f )
    {
        unsigned STYPE smf = f > 0 ? f : -f | sign_bit;
        smf += sign_bit >> 1;
        return smf & sign_bit ? -( smf & ~sign_bit ) : smf;
    }

上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。

红宝石:

def f( n )
  return 0 unless n != 0 
  ( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
number f( number n)
{
  static count(0);
  if(count > 0) return -n;
  return n;
}

f(n) = n

f(f(n)) = f(n) = -n