我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

用咖啡脚本打高尔夫:

f = (n)-> -n[0] or [n]

其他回答

从来没有人说过f(x)必须是同一类型。

def f(x):
    if type(x) == list:
        return -x[0]
    return [x]


f(2) => [2]
f(f(2)) => -2

我参加这个聚会迟到了,现在可能是墓地了。但我有两个贡献,灵感来自viraptor先前使用lambda的Python答案。读者可能认为该解决方案仅在非类型化语言中可行,而在类型化语言中将需要一些明确的额外标记。

但下面是Haskell中的解决方案1(我不是Haskell专家)。它有点作弊,因为从技术上讲,两个f是两个不同的实现。(一个f::Int->()->Int,另一个f::(()->Int)->Int)

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FunctionalDependencies #-}

module Main where

class Tran σ τ | σ -> τ where
  tran :: σ -> τ

instance Tran Int (() -> Int) where
  tran n = \_ -> (-n)

instance Tran (() -> Int) Int where
  tran g = g ()

f :: Tran σ τ => σ -> τ
f = tran

main :: IO ()
main = do
  print $ f (f (42 :: Int)) -- --> -42
  print $ f (f (0 :: Int)) -- --> 0
  print $ f (f (-69 :: Int)) -- --> 69

接下来是Typed Racket中的解决方案2。这一个满足了最大可能域的属性,因为Racket中的Number最多包含复数:

#lang typed/racket

(: f (case->
      [Number -> (-> Number)]
      [(-> Number) -> Number]))
(define (f x)
  (if (number? x) (λ () (- x)) (x)))

(f (f 42))    ; --> -42
(f (f 0))     ; --> 0
(f (f -69))   ; --> 69
(f (f 3/4))   ; --> -3/4
(f (f 8+7i))  ; --> -8-7i

:D

boolean inner = true;

int f(int input) {
   if(inner) {
      inner = false;
      return input;
   } else {
      inner = true;
      return -input;
   }
}

对于javascript(或其他动态类型语言),可以让函数接受int或对象,并返回另一个。即

function f(n) {
    if (n.passed) {
        return -n.val;
    } else {
        return {val:n, passed:1};
    }
}

js> f(f(10))  
-10
js> f(f(-10))
10

或者,您可以在强类型语言中使用重载,尽管这可能会破坏规则

int f(long n) {
    return n;
}

long f(int n) {
    return -n;
}

我的答案是正确的。。。50%的时间,所有的时间。

int f (int num) {
    if (rand () / (double) RAND_MAX > 0.5)
         return ~num + 1;
    return num;
}