我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

C函数:

int f(int n) /* Treats numbers in the range 0XC0000000 to 0X3FFFFFFF as valid to
                generate f(f(x)) equal to -x. If n is within this range, it will
                project n outside the range. If n is outside the range, it will
                return the opposite of the number whose image is n. */
{
    return n ? n > 0 ? n <= 0X3FFFFFFF ? 0X3FFFFFFF + n : 0X3FFFFFFF - n :\
           n >= 0XC0000000 ? 0XC0000000 + n : 0XC0000000 - n : 0;
}

Ideone测试和下载链接

其他回答

这很简单!

每个数字以4为周期映射到另一个数字,其中所需条件成立。

例子:

规则如下:

0→ 0±2³¹ → ±2³¹古怪的→ 甚至,甚至→ -奇数:对于所有k,0<k<2³⁰: (2k-1)→ (2k)→ (-2k+1)→ (-2k)→ (2k-1)

唯一不匹配的值是±(2³¹-1),因为只有两个。必须有两个不能匹配,因为在二进制补码系统中只有四个数字的倍数,其中0和±2³¹已被保留。

在一的补码系统中,存在+0和-0。我们开始了:

对于所有k,0<k<2³⁰: (+2k)→ (+2k+1)→ (-2k)→ (-2k-1)→ (+2k)

使用循环置换方法来实现这一点。

-b a b-a

a b-a-b

在微不足道的情况下f(0)返回0

对不起,我的电话回答很粗糙,28日后我将发布完整版本(现在正在检查…)简单地说,假设f(n)是一个循环排列,问题是如何构造它。

定义fk=f(f(f)f(…f(n))))(k fs)情况k=20.微不足道的情况f(0)返回01.分组,在情况k=2时,分组:{0} {1,2} {3,4} ... {n,n+1 |(n+1)%2=0}注意:我只使用Z+,因为结构不需要使用负数。2.构造排列:如果n%2=0,那么a=n-1 b=n如果n%2=1,则a=n b=n+1

这将产生相同的排列,因为n和f(n)在同一组中。

注意排列为P返回P(n)

对于k=2t,只做上面相同的事情,只做MOD k。对于k=2t-1,虽然该方法有效,但毫无意义,啊?(f(n)=-n正常)

这里有一个我从未见过的变体。因为这是ruby,所以32位整数的东西就不见了(当然可以添加检查)。

def f(n)
    case n
    when Integer
        proc { n * -1 }
    when Proc
        n.call
    else
        raise "Invalid input #{n.class} #{n.inspect}"
    end
end

(-10..10).each { |num|
    puts "#{num}: #{f(f(num))}"
}

另一种利用短路的Javascript解决方案。

​function f(n) {return n.inv || {inv:-n}}

f(f(1)) => -1
f(f(-1)) => 1

F#

let f n =
    match n with
    | n when n % 2 = 0 -> -n + System.Math.Sign n
    | _ -> n - System.Math.Sign -n

其中n使得System.Int32.MinValue<n<System.Int32.MaxValue。