我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

使用问题中给出的信息,您可以

从2-完成转换为符号位表示如果设置了最后一位,则翻转符号位和最后一位;否则,只翻转最后一位转换回2-完成。

所以你基本上是奇数->偶数->奇数或偶数->奇数->偶数,只对偶数更改符号。唯一不适用的数字是-2^31

代码:

function f(x) {
  var neg = x < 0;
  x = Math.abs(x) ^ 1;
  if (x & 1) {
    neg = !neg;
  }
  return neg ? -x : x;
}

其他回答

另一个作弊解决方案。我们使用允许运算符重载的语言。然后我们让f(x)返回重载==的值,以始终返回true。这似乎与问题描述相符,但显然违背了谜题的精神。

Ruby示例:

class Cheat
  def ==(n)
     true
  end
end

def f(n)
  Cheat.new
end

这给了我们:

>> f(f(1)) == -1
=> true

而且(不太令人惊讶)

>> f(f(1)) == "hello world"
=> true
int f(const int n)  {
    static int last_n;

    if (n == 0)
        return 0;
    else if (n == last_n)
        return -n;
    else
    {
        last_n = n;
        return n;
    }
}

哈克,但正确。

我参加这个聚会迟到了,现在可能是墓地了。但我有两个贡献,灵感来自viraptor先前使用lambda的Python答案。读者可能认为该解决方案仅在非类型化语言中可行,而在类型化语言中将需要一些明确的额外标记。

但下面是Haskell中的解决方案1(我不是Haskell专家)。它有点作弊,因为从技术上讲,两个f是两个不同的实现。(一个f::Int->()->Int,另一个f::(()->Int)->Int)

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FunctionalDependencies #-}

module Main where

class Tran σ τ | σ -> τ where
  tran :: σ -> τ

instance Tran Int (() -> Int) where
  tran n = \_ -> (-n)

instance Tran (() -> Int) Int where
  tran g = g ()

f :: Tran σ τ => σ -> τ
f = tran

main :: IO ()
main = do
  print $ f (f (42 :: Int)) -- --> -42
  print $ f (f (0 :: Int)) -- --> 0
  print $ f (f (-69 :: Int)) -- --> 69

接下来是Typed Racket中的解决方案2。这一个满足了最大可能域的属性,因为Racket中的Number最多包含复数:

#lang typed/racket

(: f (case->
      [Number -> (-> Number)]
      [(-> Number) -> Number]))
(define (f x)
  (if (number? x) (λ () (- x)) (x)))

(f (f 42))    ; --> -42
(f (f 0))     ; --> 0
(f (f -69))   ; --> 69
(f (f 3/4))   ; --> -3/4
(f (f 8+7i))  ; --> -8-7i

作为一名数学家,我想分享我对这个有趣问题的看法。我认为我有最有效的解决方案。

如果我没记错的话,只需翻转第一位,就可以将有符号的32位整数取反。例如,如果n=1001 1101 1110 1011 1110 0000 1110 1010,则-n=0001 1101 11101 1011 11100 0000 1110 010。

那么,我们如何定义一个函数f,它接受一个带符号的32位整数,并返回另一个有符号的32位数整数,该函数的属性是:接受两次f与翻转第一位相同?

让我重新表述这个问题,而不提整数之类的算术概念。

我们如何定义一个函数f,它接受长度为32的一系列0和1,并返回长度相同的一系列零和1,同时具有两次接受f与翻转第一位相同的性质?

观察:如果你能回答32位情况的上述问题,那么你也可以回答64位情况、100位情况等。你只需将f应用于前32位。

现在,如果你能回答2位案例的问题,哇!

是的,改变前2位就足够了。

这是伪代码

1. take n, which is a signed 32-bit integer.
2. swap the first bit and the second bit.
3. flip the first bit.
4. return the result.

备注:步骤2和步骤3可以概括为(a,b)-->(-b,a)。看起来很眼熟?这应该会让你想起平面的90度旋转以及乘以-1的平方根。

如果我只是单独展示了伪代码,而没有冗长的前奏,那么它看起来就像脱口而出的兔子,我想解释一下我是如何得到解决方案的。

根据微软/谷歌的面试官通常在面试中提出的问题,我认为提问者指的是一种创新、轻量级、简单的解决方案,它将使用按位操作,而不是那些复杂的高级答案。

灵感来自@eipipuz的回答,我编写了这个C++函数(但没有运行它):

int32_t f(int32_t n){
    int32_t temp = n & 00111111111111111111111111111111;
    x = n >> 30;
    x++;
    x = x << 30;
    return x | temp;
}

它将n的最左边的两位存储在x中,将x加1,然后再次将其替换为n的最左侧的两位。

如果我们继续以另一个f(n)作为参数n运行f(n,则最左边的两个位将如下旋转:

00 --> 01 --> 10 --> 11 --> 00 ...

请注意,最右边的30位不变。8位整数示例:

示例1:

>f(00001111)=01001111>f(01001111)=10001111[这是原始值的负值,00001111]

示例2:

>f(11101010)=00101010>f(00101010)=01101010[这是原始值11101010的负值]