我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
根据微软/谷歌的面试官通常在面试中提出的问题,我认为提问者指的是一种创新、轻量级、简单的解决方案,它将使用按位操作,而不是那些复杂的高级答案。
灵感来自@eipipuz的回答,我编写了这个C++函数(但没有运行它):
int32_t f(int32_t n){
int32_t temp = n & 00111111111111111111111111111111;
x = n >> 30;
x++;
x = x << 30;
return x | temp;
}
它将n的最左边的两位存储在x中,将x加1,然后再次将其替换为n的最左侧的两位。
如果我们继续以另一个f(n)作为参数n运行f(n,则最左边的两个位将如下旋转:
00 --> 01 --> 10 --> 11 --> 00 ...
请注意,最右边的30位不变。8位整数示例:
示例1:
>f(00001111)=01001111>f(01001111)=10001111[这是原始值的负值,00001111]
示例2:
>f(11101010)=00101010>f(00101010)=01101010[这是原始值11101010的负值]
其他回答
这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。
double f(double n)
{
if (n == (double)(int)n)
return n + 0.5;
else
return -(n - 0.5);
}
这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。
不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。
我参加这个聚会迟到了,现在可能是墓地了。但我有两个贡献,灵感来自viraptor先前使用lambda的Python答案。读者可能认为该解决方案仅在非类型化语言中可行,而在类型化语言中将需要一些明确的额外标记。
但下面是Haskell中的解决方案1(我不是Haskell专家)。它有点作弊,因为从技术上讲,两个f是两个不同的实现。(一个f::Int->()->Int,另一个f::(()->Int)->Int)
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FunctionalDependencies #-}
module Main where
class Tran σ τ | σ -> τ where
tran :: σ -> τ
instance Tran Int (() -> Int) where
tran n = \_ -> (-n)
instance Tran (() -> Int) Int where
tran g = g ()
f :: Tran σ τ => σ -> τ
f = tran
main :: IO ()
main = do
print $ f (f (42 :: Int)) -- --> -42
print $ f (f (0 :: Int)) -- --> 0
print $ f (f (-69 :: Int)) -- --> 69
接下来是Typed Racket中的解决方案2。这一个满足了最大可能域的属性,因为Racket中的Number最多包含复数:
#lang typed/racket
(: f (case->
[Number -> (-> Number)]
[(-> Number) -> Number]))
(define (f x)
(if (number? x) (λ () (- x)) (x)))
(f (f 42)) ; --> -42
(f (f 0)) ; --> 0
(f (f -69)) ; --> 69
(f (f 3/4)) ; --> -3/4
(f (f 8+7i)) ; --> -8-7i
下面是一个简短的Python答案:
def f(n):
m = -n if n % 2 == 0 else n
return m + sign(n)
一般情况
稍微调整一下上面的内容就可以处理我们希望k个自调用否定输入的情况——例如,如果k=3,这意味着g(g(g)n))=-n:
def g(n):
if n % k: return n + sign(n)
return -n + (k - 1) * sign(n)
这是通过将0保留在适当位置并创建长度为2*k的循环来实现的,因此,在任何循环中,n和-n之间的距离为k。具体来说,每个周期如下:
N * k + 1, N * k + 2, ... , N * k + (k - 1), - N * k - 1, ... , - N * k - (k - 1)
或者,为了更容易理解,这里是k=3的示例循环:
1, 2, 3, -1, -2, -3
4, 5, 6, -4, -5, -6
这组循环最大化了在任何以零为中心的机器类型(如有符号int32或有符号int64类型)内工作的输入范围。
兼容范围分析
映射x->f(x)实际上必须形成长度为2*k的循环,其中x=0是特殊情况下的1-长度循环,因为-0=0。因此,一般k的问题是可解的,当且仅当输入-1(补偿0)的范围是2*k的倍数,并且正负范围是相反的。
对于有符号整数表示,我们总是有一个最小的负数,在该范围内没有正的对应项,因此该问题在整个范围内变得不可解决。例如,有符号字符的范围为[-128127],因此在给定范围内f(f(-128))=128是不可能的。
怎么样:
f(n) = sign(n) - (-1)ⁿ * n
在Python中:
def f(n):
if n == 0: return 0
if n >= 0:
if n % 2 == 1:
return n + 1
else:
return -1 * (n - 1)
else:
if n % 2 == 1:
return n - 1
else:
return -1 * (n + 1)
Python自动将整数提升为任意长度的longs。在其他语言中,最大的正整数将溢出,因此它将适用于除该整数之外的所有整数。
为了使其适用于实数,您需要替换(-1)中的nⁿ 如果n>0,则为{上限(n);如果n<0},则为下限(n)。
在C#中(适用于任何双精度,溢出情况除外):
static double F(double n)
{
if (n == 0) return 0;
if (n < 0)
return ((long)Math.Ceiling(n) % 2 == 0) ? (n + 1) : (-1 * (n - 1));
else
return ((long)Math.Floor(n) % 2 == 0) ? (n - 1) : (-1 * (n + 1));
}
这个怎么样(C语言):
int f(int n)
{
static int t = 1;
return (t = t ? 0 : 1) ? -n : n;
}
刚刚试过,而且
f(f(1000))
回报-1000
f(f(-1000))
返回1000
这是正确的还是我没有抓住重点?