我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
根据微软/谷歌的面试官通常在面试中提出的问题,我认为提问者指的是一种创新、轻量级、简单的解决方案,它将使用按位操作,而不是那些复杂的高级答案。
灵感来自@eipipuz的回答,我编写了这个C++函数(但没有运行它):
int32_t f(int32_t n){
int32_t temp = n & 00111111111111111111111111111111;
x = n >> 30;
x++;
x = x << 30;
return x | temp;
}
它将n的最左边的两位存储在x中,将x加1,然后再次将其替换为n的最左侧的两位。
如果我们继续以另一个f(n)作为参数n运行f(n,则最左边的两个位将如下旋转:
00 --> 01 --> 10 --> 11 --> 00 ...
请注意,最右边的30位不变。8位整数示例:
示例1:
>f(00001111)=01001111>f(01001111)=10001111[这是原始值的负值,00001111]
示例2:
>f(11101010)=00101010>f(00101010)=01101010[这是原始值11101010的负值]
其他回答
这个问题并没有说明函数f的输入类型和返回值必须是什么(至少不是你给出的方式)。。。
…只是当n是32位整数时,f(f(n))=-n
那么,怎么样
Int64 f(Int64 n)
{
return(n > Int32.MaxValue ?
-(n - 4L * Int32.MaxValue):
n + 4L * Int32.MaxValue);
}
如果n是32位整数,则语句f(f(n))==-n将为真。
显然,这种方法可以扩展到更大范围的数字。。。
我有另一个解决方案,它可以在一半时间内工作:
def f(x):
if random.randrange(0, 2):
return -x
return x
怎么样
int f(int n)
{
return -abs(n);
}
C++解决方案;
long long f(int n){return static_cast <long long> (n);}
int f(long long n){return -static_cast <int> (n);}
int n = 777;
assert(f(f(n)) == -n);
Python 2.6:
f = lambda n: (n % 2 * n or -n) + (n > 0) - (n < 0)
我意识到这对讨论毫无帮助,但我无法抗拒。