我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
虽然问题说n必须是32位int,但它没有说参数或返回类型必须是32比特int0
private final long MAGIC_BIT=1<<38;
long f(long n) {
return n & MAGIC_BIT != 0 ? -(n & !MAGIC_BIT) : n | MAGIC_BIT;
}
编辑:
这实际上是一个很好的面试问题。最好的答案是难以或不可能回答的,因为它迫使人们仔细思考,你可以观察并寻找:
他们会放弃吗?他们说这很愚蠢吗?他们是否尝试独特的方法?他们在处理问题时是否与您沟通?他们是否要求进一步细化要求?
etc.
永远不要只回答行为问题,除非你有一个非常好的答案。始终保持愉快,并尝试让提问者参与进来。不要沮丧,不要过早放弃!如果你真的一无所获,尝试一些完全非法的、可能奏效的方法,你将获得几乎全部的学分。
其他回答
根据您的平台,某些语言允许您在函数中保持状态。VB.Net,例如:
Function f(ByVal n As Integer) As Integer
Static flag As Integer = -1
flag *= -1
Return n * flag
End Function
IIRC、C++也允许这样做。我怀疑他们正在寻找不同的解决方案。
另一个想法是,由于它们没有定义函数第一次调用的结果,因此可以使用奇数/均匀度来控制是否反转符号:
int f(int n)
{
int sign = n>=0?1:-1;
if (abs(n)%2 == 0)
return ((abs(n)+1)*sign * -1;
else
return (abs(n)-1)*sign;
}
所有偶数的幅度加一,所有奇数的幅度减一。两次调用的结果大小相同,但在一次调用中,我们甚至交换了符号。在某些情况下,这不会起作用(-1,max或min int),但它的效果比迄今为止任何其他建议都要好得多。
这个Perl解决方案适用于整数、浮点数和字符串。
sub f {
my $n = shift;
return ref($n) ? -$$n : \$n;
}
尝试一些测试数据。
print $_, ' ', f(f($_)), "\n" for -2, 0, 1, 1.1, -3.3, 'foo' '-bar';
输出:
-2 2
0 0
1 -1
1.1 -1.1
-3.3 3.3
foo -foo
-bar +bar
f(n) { return -1 * abs(n) }
如何处理溢出问题?还是我错过了重点?
int f(const int n) {
static int last_n;
if (n == 0)
return 0;
else if (n == last_n)
return -n;
else
{
last_n = n;
return n;
}
}
哈克,但正确。
这是rossfabricant答案的C实现。注意,由于我始终使用32位整数,f(f(2147483647))==2147483648,而不是-2147483647。
int32_t f( int32_t n )
{
if( n == 0 ) return 0;
switch( n & 0x80000001 ) {
case 0x00000000:
return -1 * ( n - 1 );
case 0x00000001:
return n + 1;
case 0x80000000:
return -1 * ( n + 1 );
default:
return n - 1;
}
}
如果您将问题定义为允许f()接受并返回int64_t,则会涉及2147483647。当然,switch语句中使用的文字必须更改。