我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
虽然问题说n必须是32位int,但它没有说参数或返回类型必须是32比特int0
private final long MAGIC_BIT=1<<38;
long f(long n) {
return n & MAGIC_BIT != 0 ? -(n & !MAGIC_BIT) : n | MAGIC_BIT;
}
编辑:
这实际上是一个很好的面试问题。最好的答案是难以或不可能回答的,因为它迫使人们仔细思考,你可以观察并寻找:
他们会放弃吗?他们说这很愚蠢吗?他们是否尝试独特的方法?他们在处理问题时是否与您沟通?他们是否要求进一步细化要求?
etc.
永远不要只回答行为问题,除非你有一个非常好的答案。始终保持愉快,并尝试让提问者参与进来。不要沮丧,不要过早放弃!如果你真的一无所获,尝试一些完全非法的、可能奏效的方法,你将获得几乎全部的学分。
其他回答
这个怎么样?
int nasty(int input)
{
return input + INT_MAX/2;
}
使用循环置换方法来实现这一点。
-b a b-a
a b-a-b
在微不足道的情况下f(0)返回0
对不起,我的电话回答很粗糙,28日后我将发布完整版本(现在正在检查…)简单地说,假设f(n)是一个循环排列,问题是如何构造它。
定义fk=f(f(f)f(…f(n))))(k fs)情况k=20.微不足道的情况f(0)返回01.分组,在情况k=2时,分组:{0} {1,2} {3,4} ... {n,n+1 |(n+1)%2=0}注意:我只使用Z+,因为结构不需要使用负数。2.构造排列:如果n%2=0,那么a=n-1 b=n如果n%2=1,则a=n b=n+1
这将产生相同的排列,因为n和f(n)在同一组中。
注意排列为P返回P(n)
对于k=2t,只做上面相同的事情,只做MOD k。对于k=2t-1,虽然该方法有效,但毫无意义,啊?(f(n)=-n正常)
我认为这些问题的答案最好用图表直观地解释。当我们忽略零时,我们可以将整数分成4个数的小集合:
1 → 2 3 → 4 5 → 6
↑ ↓ ↑ ↓ ↑ ↓ ...
-2 ← -1 -4 ← -3 -6 ← -5
这很容易翻译成代码。注意,偶数改变符号,奇数增加或减少1。在C#中,它看起来像这样:
public static int f(int x)
{
if(x == 0)
return 0;
if(x > 0)
return (x % 2 == 0) ? -x+1 : x+1;
// we know x is negative at this point
return (x % 2 == 0) ? -x-1 : x-1;
}
当然,您可以通过使用巧妙的技巧来缩短此方法,但我认为这段代码最好地解释了它本身。
然后是范围。32位整数的范围从-2^31到2^31-1。数字2^31-1、-2^31-1和-2^31超出了f(x)的范围,因为缺少数字2^31。
也许我错过了什么?
这不是简单的事情吗
function f(n)
{
if(n ==0 || n < 0){return n;}
return n * -1;
}
编辑:
所以我错过了阅读问题,嗯哼,所以:
function f(n)
{
if(!c(n,"z")&&!c(n,"n")){if(n==0){return "z"+n;}return "n"+n;}
if( c(n,"z")){return 0;}return parseInt(n.replace("n",""))*-1;
}
function c(x,y){return x.indexOf(y) !==-1;}
丑陋但有效。
这很简单!
每个数字以4为周期映射到另一个数字,其中所需条件成立。
例子:
规则如下:
0→ 0±2³¹ → ±2³¹古怪的→ 甚至,甚至→ -奇数:对于所有k,0<k<2³⁰: (2k-1)→ (2k)→ (-2k+1)→ (-2k)→ (2k-1)
唯一不匹配的值是±(2³¹-1),因为只有两个。必须有两个不能匹配,因为在二进制补码系统中只有四个数字的倍数,其中0和±2³¹已被保留。
在一的补码系统中,存在+0和-0。我们开始了:
对于所有k,0<k<2³⁰: (+2k)→ (+2k+1)→ (-2k)→ (-2k-1)→ (+2k)