我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
int j = 0;
void int f(int n)
{
j++;
if(j==2)
{
j = 0;
return -n;
}
return n;
}
:D
其他回答
我可以想象,使用第31位作为虚(I)位将是一种支持一半总范围的方法。
也许是作弊?(python)
def f(n):
if isinstance(n, list):
return -n[0]
else:
return [n,0]
n = 4
print f(f(n))
--output--
-4
这个怎么样(C语言):
int f(int n)
{
static int t = 1;
return (t = t ? 0 : 1) ? -n : n;
}
刚刚试过,而且
f(f(1000))
回报-1000
f(f(-1000))
返回1000
这是正确的还是我没有抓住重点?
这个想法已经在其他答案中使用过,但我把它融入了Python的一行:
def f(n):
return str(n) if type(n) == int else -int(n)
好问题!
这花了我大约35秒的时间思考并写下:
int f(int n){
static int originalN=0;
if (n!=0)
originalN=n;
return n-originalN;
}