我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

int j = 0;

void int f(int n)
{    
    j++;

    if(j==2)
    {
       j = 0;
       return -n;
    }

    return n;
}

:D

其他回答

由于C++中的重载:

double f(int var)
{
 return double(var);
} 

int f(double var)
{
 return -int(var);
}

int main(){
int n(42);
std::cout<<f(f(n));
}
int j = 0;

void int f(int n)
{    
    j++;

    if(j==2)
    {
       j = 0;
       return -n;
    }

    return n;
}

:D

这个是Python中的。适用于n的所有负值:

f = abs

好问题!

这花了我大约35秒的时间思考并写下:

int f(int n){
    static int originalN=0;
    if (n!=0)
        originalN=n;
    return n-originalN;
}

在Python中

f=lambda n:n[0]if type(n)is list else[-n]