我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

Tcl:

proc f {input} {
    if { [string is integer $input] } {
      return [list expr [list 0 - $input]]
    } else {
      return [eval $input]
    }
}

% f [f 1]
-1

按照其他一些答案的思路。。。如果它是一个整数,则返回一个返回该数字负数的命令。如果不是数字,请对其求值并返回结果。

其他回答

number f( number n)
{
  static count(0);
  if(count > 0) return -n;
  return n;
}

f(n) = n

f(f(n)) = f(n) = -n

上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。

红宝石:

def f( n )
  return 0 unless n != 0 
  ( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end

虽然问题说n必须是32位int,但它没有说参数或返回类型必须是32比特int0

private final long MAGIC_BIT=1<<38;
long f(long n) {
    return n & MAGIC_BIT != 0 ? -(n & !MAGIC_BIT) : n | MAGIC_BIT;
}

编辑:

这实际上是一个很好的面试问题。最好的答案是难以或不可能回答的,因为它迫使人们仔细思考,你可以观察并寻找:

他们会放弃吗?他们说这很愚蠢吗?他们是否尝试独特的方法?他们在处理问题时是否与您沟通?他们是否要求进一步细化要求?

etc.

永远不要只回答行为问题,除非你有一个非常好的答案。始终保持愉快,并尝试让提问者参与进来。不要沮丧,不要过早放弃!如果你真的一无所获,尝试一些完全非法的、可能奏效的方法,你将获得几乎全部的学分。

你没说他们期望什么样的语言。。。这是一个静态解决方案(Haskell)。这基本上是在搞乱两个最重要的比特:

f :: Int -> Int
f x | (testBit x 30 /= testBit x 31) = negate $ complementBit x 30
    | otherwise = complementBit x 30

在动态语言(Python)中要容易得多。只需检查参数是否为数字X,并返回返回-X的lambda:

def f(x):
   if isinstance(x,int):
      return (lambda: -x)
   else:
      return x()

很简单,只需让f返回看起来等于任何整数的值,并且可以从整数转换。

public class Agreeable
{
    public static bool operator==(Agreeable c, int n)
        { return true; }

    public static bool operator!=(Agreeable c, int n)
        { return false; }

    public static implicit operator Agreeable(int n)
        { return new Agreeable(); }
}

class Program
{
    public static Agreeable f(Agreeable c)
        { return c; }

    static void Main(string[] args)
    {
        Debug.Assert(f(f(0)) == 0);
        Debug.Assert(f(f(5)) == -5);
        Debug.Assert(f(f(-5)) == 5);
        Debug.Assert(f(f(int.MaxValue)) == -int.MaxValue);
    }
}