我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
Tcl:
proc f {input} {
if { [string is integer $input] } {
return [list expr [list 0 - $input]]
} else {
return [eval $input]
}
}
% f [f 1]
-1
按照其他一些答案的思路。。。如果它是一个整数,则返回一个返回该数字负数的命令。如果不是数字,请对其求值并返回结果。
其他回答
也许我错过了什么?
这不是简单的事情吗
function f(n)
{
if(n ==0 || n < 0){return n;}
return n * -1;
}
编辑:
所以我错过了阅读问题,嗯哼,所以:
function f(n)
{
if(!c(n,"z")&&!c(n,"n")){if(n==0){return "z"+n;}return "n"+n;}
if( c(n,"z")){return 0;}return parseInt(n.replace("n",""))*-1;
}
function c(x,y){return x.indexOf(y) !==-1;}
丑陋但有效。
这很简单!
每个数字以4为周期映射到另一个数字,其中所需条件成立。
例子:
规则如下:
0→ 0±2³¹ → ±2³¹古怪的→ 甚至,甚至→ -奇数:对于所有k,0<k<2³⁰: (2k-1)→ (2k)→ (-2k+1)→ (-2k)→ (2k-1)
唯一不匹配的值是±(2³¹-1),因为只有两个。必须有两个不能匹配,因为在二进制补码系统中只有四个数字的倍数,其中0和±2³¹已被保留。
在一的补码系统中,存在+0和-0。我们开始了:
对于所有k,0<k<2³⁰: (+2k)→ (+2k+1)→ (-2k)→ (-2k-1)→ (+2k)
:D
boolean inner = true;
int f(int input) {
if(inner) {
inner = false;
return input;
} else {
inner = true;
return -input;
}
}
该问题表示“32位有符号整数”,但没有指定它们是2个补码还是1个补码。
如果使用1补码,则所有2^32值都出现在长度为4的循环中-不需要零的特殊情况,也不需要条件。
在C中:
int32_t f(int32_t x)
{
return (((x & 0xFFFFU) << 16) | ((x & 0xFFFF0000U) >> 16)) ^ 0xFFFFU;
}
这项工作由
交换高位和低位16位块反转其中一个块
两次传递后,我们得到原始值的位逆。在一中补语表示等同于否定。
示例:
Pass | x
-----+-------------------
0 | 00000001 (+1)
1 | 0001FFFF (+131071)
2 | FFFFFFFE (-1)
3 | FFFE0000 (-131071)
4 | 00000001 (+1)
Pass | x
-----+-------------------
0 | 00000000 (+0)
1 | 0000FFFF (+65535)
2 | FFFFFFFF (-0)
3 | FFFF0000 (-65535)
4 | 00000000 (+0)
另一个作弊解决方案。我们使用允许运算符重载的语言。然后我们让f(x)返回重载==的值,以始终返回true。这似乎与问题描述相符,但显然违背了谜题的精神。
Ruby示例:
class Cheat
def ==(n)
true
end
end
def f(n)
Cheat.new
end
这给了我们:
>> f(f(1)) == -1
=> true
而且(不太令人惊讶)
>> f(f(1)) == "hello world"
=> true