我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

该问题表示“32位有符号整数”,但没有指定它们是2个补码还是1个补码。

如果使用1补码,则所有2^32值都出现在长度为4的循环中-不需要零的特殊情况,也不需要条件。

在C中:

int32_t f(int32_t x)
{
  return (((x & 0xFFFFU) << 16) | ((x & 0xFFFF0000U) >> 16)) ^ 0xFFFFU;
}

这项工作由

交换高位和低位16位块反转其中一个块

两次传递后,我们得到原始值的位逆。在一中补语表示等同于否定。

示例:

Pass |        x
-----+-------------------
   0 | 00000001      (+1)
   1 | 0001FFFF (+131071)
   2 | FFFFFFFE      (-1)
   3 | FFFE0000 (-131071)
   4 | 00000001      (+1)

Pass |        x
-----+-------------------
   0 | 00000000      (+0)
   1 | 0000FFFF  (+65535)
   2 | FFFFFFFF      (-0)
   3 | FFFF0000  (-65535)
   4 | 00000000      (+0)

其他回答

使用问题中给出的信息,您可以

从2-完成转换为符号位表示如果设置了最后一位,则翻转符号位和最后一位;否则,只翻转最后一位转换回2-完成。

所以你基本上是奇数->偶数->奇数或偶数->奇数->偶数,只对偶数更改符号。唯一不适用的数字是-2^31

代码:

function f(x) {
  var neg = x < 0;
  x = Math.abs(x) ^ 1;
  if (x & 1) {
    neg = !neg;
  }
  return neg ? -x : x;
}
void f(int x)
{
     Console.WriteLine(string.Format("f(f({0})) == -{0}",x));
}

抱歉,伙计们。。。这太诱人了;)

有些类似,但我只是想写下我的第一个想法(用C++)

#include <vector>

vector<int>* f(int n)
{
  returnVector = new vector<int>();
  returnVector->push_back(n);
  return returnVector;
}

int f(vector<int>* n) { return -(n->at(0)); }

仅使用重载使f(f(n))实际调用两个不同的函数

根据微软/谷歌的面试官通常在面试中提出的问题,我认为提问者指的是一种创新、轻量级、简单的解决方案,它将使用按位操作,而不是那些复杂的高级答案。

灵感来自@eipipuz的回答,我编写了这个C++函数(但没有运行它):

int32_t f(int32_t n){
    int32_t temp = n & 00111111111111111111111111111111;
    x = n >> 30;
    x++;
    x = x << 30;
    return x | temp;
}

它将n的最左边的两位存储在x中,将x加1,然后再次将其替换为n的最左侧的两位。

如果我们继续以另一个f(n)作为参数n运行f(n,则最左边的两个位将如下旋转:

00 --> 01 --> 10 --> 11 --> 00 ...

请注意,最右边的30位不变。8位整数示例:

示例1:

>f(00001111)=01001111>f(01001111)=10001111[这是原始值的负值,00001111]

示例2:

>f(11101010)=00101010>f(00101010)=01101010[这是原始值11101010的负值]

使用全局。。。但事实如此?

bool done = false
f(int n)
{
  int out = n;
  if(!done)
  {  
      out = n * -1;
      done = true;
   }
   return out;
}