我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

该问题表示“32位有符号整数”,但没有指定它们是2个补码还是1个补码。

如果使用1补码,则所有2^32值都出现在长度为4的循环中-不需要零的特殊情况,也不需要条件。

在C中:

int32_t f(int32_t x)
{
  return (((x & 0xFFFFU) << 16) | ((x & 0xFFFF0000U) >> 16)) ^ 0xFFFFU;
}

这项工作由

交换高位和低位16位块反转其中一个块

两次传递后,我们得到原始值的位逆。在一中补语表示等同于否定。

示例:

Pass |        x
-----+-------------------
   0 | 00000001      (+1)
   1 | 0001FFFF (+131071)
   2 | FFFFFFFE      (-1)
   3 | FFFE0000 (-131071)
   4 | 00000001      (+1)

Pass |        x
-----+-------------------
   0 | 00000000      (+0)
   1 | 0000FFFF  (+65535)
   2 | FFFFFFFF      (-0)
   3 | FFFF0000  (-65535)
   4 | 00000000      (+0)

其他回答

也许我错过了什么?

这不是简单的事情吗

    function f(n)
    {
        if(n ==0 || n < 0){return n;}
        return n * -1;
    }

编辑:

所以我错过了阅读问题,嗯哼,所以:

    function f(n)
    {
        if(!c(n,"z")&&!c(n,"n")){if(n==0){return "z"+n;}return "n"+n;}
        if( c(n,"z")){return 0;}return parseInt(n.replace("n",""))*-1;
    }
    function c(x,y){return x.indexOf(y) !==-1;}

丑陋但有效。

在PHP中

function f($n) {
    if(is_int($n)) {
        return (string)$n;
    }
    else {
        return (int)$n * (-1);
    }
}

我相信你能理解其他语言的这种方法的精神。为了让不使用弱类型语言的人更清楚,我明确地将其转换回int。对于某些语言,您必须重载该函数。

这个解决方案的妙处在于,无论您是从字符串还是整数开始,它都是有效的,并且在返回f(n)时不会明显改变任何内容。

在我看来,面试官在问,“这位应聘者是否知道如何标记数据以供以后操作”,以及“这位应聘人员是否知道如何在最少更改数据的情况下标记数据?”你可以使用双精度、字符串或任何其他你想使用的数据类型来实现这一点。

很简单,只需让f返回看起来等于任何整数的值,并且可以从整数转换。

public class Agreeable
{
    public static bool operator==(Agreeable c, int n)
        { return true; }

    public static bool operator!=(Agreeable c, int n)
        { return false; }

    public static implicit operator Agreeable(int n)
        { return new Agreeable(); }
}

class Program
{
    public static Agreeable f(Agreeable c)
        { return c; }

    static void Main(string[] args)
    {
        Debug.Assert(f(f(0)) == 0);
        Debug.Assert(f(f(5)) == -5);
        Debug.Assert(f(f(-5)) == 5);
        Debug.Assert(f(f(int.MaxValue)) == -int.MaxValue);
    }
}
int f( int n ){
    return n==0?0:(n&1?n:-n)+(n<0?-1:1);
}

利用JavaScript异常。

function f(n) {
    try {
        return n();
    }
    catch(e) { 
        return function() { return -n; };
    }
}

f(f(0))=>0f(f(1))=>-1