我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
记住你的上一个状态不是一个足够好的答案吗?
int f (int n)
{
//if count
static int count = 0;
if (count == 0)
{
count = 1;
return n;
}
if (n == 0)
return 0;
else if (n > 0)
{
count = 0;
return abs(n)*(-1);
}
else
{
count = 0;
return abs(n);
}
}
int main()
{
int n = 42;
std::cout << f(f(n))
}
其他回答
容易的:
function f($n) {
if ($n%2 == 0) return ($n+1)*-1;
else return ($n-1);
}
怎么样
int f(int n)
{
return -abs(n);
}
我还没有看其他答案,我假设已经彻底讨论了按位技术。
我想我会在C++中想出一些邪恶的东西,希望不会上当受骗:
struct ImplicitlyConvertibleToInt
{
operator int () const { return 0; }
};
int f(const ImplicitlyConvertibleToInt &) { return 0; }
ImplicitlyConvertibleToInt f(int & n)
{
n = 0; // The problem specification didn't say n was const
return ImplicitlyConvertibleToInt();
}
整个ImplicitlyConvertableToInt类型和重载是必需的,因为临时变量不能绑定到非常量引用。
当然,现在来看它,f(n)是否在-n之前执行是不确定的。
对于这种程度的邪恶,也许一个更好的解决方案是:
struct ComparesTrueToInt
{
ComparesTrueToInt(int) { } // implicit construction from int
};
bool operator == (ComparesTrueToInt, int) const { return true; }
ComparesTrueToInt f(ComparesTrueToInt ct) { return ComparesTrueToInt(); }
C++解决方案;
long long f(int n){return static_cast <long long> (n);}
int f(long long n){return -static_cast <int> (n);}
int n = 777;
assert(f(f(n)) == -n);
由于C++中的重载:
double f(int var)
{
return double(var);
}
int f(double var)
{
return -int(var);
}
int main(){
int n(42);
std::cout<<f(f(n));
}