我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
创建许多解的一种方法是注意,如果我们将整数划分为两个集合S和R
那么我们可以如下创建f:
如果x在R中,则f(x)=g(x)
如果x在S中,则f(x)=-invg(x)
其中invg(g(x))=x,所以invg是g的逆函数。
上面提到的第一个解决方案是分区R=偶数,R=奇数,g(x)=x+1。
我们可以取任意两个无限集合T,P s.T T+U=整数集合,取s=T+(-T),R=U+(-U)。
然后-S=S和-R=R通过它们的定义,我们可以将g取为从S到R的任何1-1对应关系,这必须存在,因为这两个集合都是无限的和可数的。
因此,这将为我们提供许多解决方案,但并非所有解决方案都可以编程,因为它们不会被有限地定义。
例如:
R=可被3整除的数字,S=不可被3除的数字。
然后我们取g(6r)=3r+1,g(6r+3)=3r+2。
其他回答
int f(const int n) {
static int last_n;
if (n == 0)
return 0;
else if (n == last_n)
return -n;
else
{
last_n = n;
return n;
}
}
哈克,但正确。
事实上,我并没有试图给出问题本身的解决方案,但我有几点意见,因为问题表明,提出这个问题是(工作?)面试的一部分:
我会先问“为什么需要这样的函数?这是什么更大的问题?”而不是试图当场解决实际提出的问题。这表明了我是如何思考和解决这样的问题的。谁知道?这甚至可能是在一次采访中首先提出这个问题的真正原因。如果答案是“没关系,假设它是需要的,并告诉我如何设计这个功能。”我会继续这样做。然后,我将编写我将使用的C#测试用例代码(显而易见:从int.MinValue到int.MaxValue的循环,对于该范围内的每个n调用f(f(n)),并检查结果是-n),告诉我将使用测试驱动开发来获得这样的函数。只有当面试官继续要求我解决所提出的问题时,我才真正开始在面试过程中胡乱写下伪代码,试图得到某种答案。然而,如果面试官能说明公司的情况,我真的不认为我会跳下去接受这份工作。。。
哦,这个答案假设面试是针对一个与C#编程相关的职位。如果面试的是与数学相关的职位,那当然是一个愚蠢的答案
这将在非常广泛的数字范围内发挥作用:
static int f(int n)
{
int lastBit = int.MaxValue;
lastBit++;
int secondLastBit = lastBit >> 1;
int tuple = lastBit | secondLastBit;
if ((n & tuple) == tuple)
return n + lastBit;
if ((n & tuple) == 0)
return n + lastBit;
return -(n + lastBit);
}
我最初的方法是使用最后一位作为检查位,以了解我们在第一次或第二次调用中的位置。基本上,我会在第一次调用后将此位设置为1,以向第二次调用发出第一次调用已经通过的信号。但是,这种方法被负数所击败,负数的最后一位在第一次调用期间已经到达1。
同样的理论适用于大多数负数的倒数第二位。但是,通常发生的情况是,大多数情况下,最后一位和第二位是相同的。它们要么都是负数的1,要么都是正数的0。
所以我的最后一个方法是检查它们是否都是1或都是0,这意味着在大多数情况下这是第一次调用。如果最后一位与第二个最后一位不同,那么我假设我们在第二次调用,然后简单地重新反转最后一位。显然,对于使用最后两位的非常大的数字来说,这不起作用。但是,它再次适用于非常广泛的数字。
这里有一个我从未见过的变体。因为这是ruby,所以32位整数的东西就不见了(当然可以添加检查)。
def f(n)
case n
when Integer
proc { n * -1 }
when Proc
n.call
else
raise "Invalid input #{n.class} #{n.inspect}"
end
end
(-10..10).each { |num|
puts "#{num}: #{f(f(num))}"
}
记住你的上一个状态不是一个足够好的答案吗?
int f (int n)
{
//if count
static int count = 0;
if (count == 0)
{
count = 1;
return n;
}
if (n == 0)
return 0;
else if (n > 0)
{
count = 0;
return abs(n)*(-1);
}
else
{
count = 0;
return abs(n);
}
}
int main()
{
int n = 42;
std::cout << f(f(n))
}