我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这适用于1073741823至1073741822范围:

int F(int n)
{
    if(n < 0)
    {
        if(n > -1073741824)
            n = -1073741824 + n;
        else n = -(n + 1073741824);
    }
    else
    {
        if(n < 1073741823)
            n = 1073741823 + n;
        else n = -(n - 1073741823);
    }
    return n;
}

它的工作原理是获取32位有符号整数的可用范围并将其一分为二。函数的第一次迭代将n自身置于该范围之外。第二次迭代检查它是否在该范围之外-如果是,则将其放回该范围内,但使其为负值。

这实际上是一种保留关于值n的额外“位”信息的方法。

其他回答

或者,您可以滥用预处理器:

#define f(n) (f##n)
#define ff(n) -n

int main()
{
  int n = -42;
  cout << "f(f(" << n << ")) = " << f(f(n)) << endl;
}

C#表示2^32-1个数字的范围,所有整数32(int32.MinValue除外)

    Func<int, int> f = n =>
        n < 0
           ? (n & (1 << 30)) == (1 << 30) ? (n ^ (1 << 30)) : - (n | (1 << 30))
           : (n & (1 << 30)) == (1 << 30) ? -(n ^ (1 << 30)) : (n | (1 << 30));

    Console.WriteLine(f(f(Int32.MinValue + 1))); // -2147483648 + 1
    for (int i = -3; i <= 3  ; i++)
        Console.WriteLine(f(f(i)));
    Console.WriteLine(f(f(Int32.MaxValue))); // 2147483647

打印:

2147483647
3
2
1
0
-1
-2
-3
-2147483647

这是rossfabricant答案的C实现。注意,由于我始终使用32位整数,f(f(2147483647))==2147483648,而不是-2147483647。

int32_t f( int32_t n )
{
    if( n == 0 ) return 0;
    switch( n & 0x80000001 ) {
        case 0x00000000:
            return -1 * ( n - 1 );
        case 0x00000001:
            return n + 1;
        case 0x80000000:
            return -1 * ( n + 1 );
        default:
            return n - 1;
    }
}

如果您将问题定义为允许f()接受并返回int64_t,则会涉及2147483647。当然,switch语句中使用的文字必须更改。

本质上,函数必须将可用范围划分为大小为4的循环,其中-n位于n循环的另一端。但是,0必须是大小为1的循环的一部分,否则0->x->0->x!=-x.因为0是单独的,所以在我们的范围内必须有3个其他值(其大小是4的倍数)不在具有4个元素的正确循环中。

我选择这些额外的奇怪值为MIN_INT、MAX_INT和MIN_INT+1。此外,MIN_INT+1将正确映射到MAX_INT,但会被卡在那里而不能映射回来。我认为这是最好的妥协,因为它有一个很好的特性,即只有极端值不能正常工作。此外,这意味着它将适用于所有BigInt。

int f(int n):
    if n == 0 or n == MIN_INT or n == MAX_INT: return n
    return ((Math.abs(n) mod 2) * 2 - 1) * n + Math.sign(n)

一个C++版本,可能会稍微改变规则,但适用于所有数值类型(浮点、整型、双精度),甚至是重载一元负号的类类型:

template <class T>
struct f_result
{
  T value;
};

template <class T>
f_result <T> f (T n)
{
  f_result <T> result = {n};
  return result;
}

template <class T>
T f (f_result <T> n)
{
  return -n.value;
}

void main (void)
{
  int n = 45;
  cout << "f(f(" << n << ")) = " << f(f(n)) << endl;
  float p = 3.14f;
  cout << "f(f(" << p << ")) = " << f(f(p)) << endl;
}