我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
我认为最大的可能范围是暗示模块化算术解决方案。在一些模基M中,有一个数,当平方等于M-1(等于-1)。例如,如果M=13,5*5=25,25 mod 13=12(=-1)总之,这里有一些M=2**32-3的python代码。
def f(x):
m=2**32-3;
halfm=m//2;
i_mod_m=1849436465
if abs( x ) >halfm:
raise "too big"
if x<0:
x+=m
x=(i_mod_m*x) % m
if (x>halfm):
x-=m
return x;
注意,有3个值不适用于2**31-1、-(2**31-1)和-(2*#31)
其他回答
这个Perl解决方案适用于整数、浮点数和字符串。
sub f {
my $n = shift;
return ref($n) ? -$$n : \$n;
}
尝试一些测试数据。
print $_, ' ', f(f($_)), "\n" for -2, 0, 1, 1.1, -3.3, 'foo' '-bar';
输出:
-2 2
0 0
1 -1
1.1 -1.1
-3.3 3.3
foo -foo
-bar +bar
Wolfram语言的解决方案:
f[f[n_]] := -n
应用程序:
In[2]:= f[f[10]]
Out[2]= -10
In[3]:= f[10]
Out[3]= f[10]
因为这个问题没有说明f(n)的值,所以f[n]仍然没有赋值。
这也是一个解决方案(但我们稍微改变了一下规则):
def f(n):
if isinstance(n,int):
return str(n)
else:
return -int(n)
C函数:
int f(int n) /* Treats numbers in the range 0XC0000000 to 0X3FFFFFFF as valid to
generate f(f(x)) equal to -x. If n is within this range, it will
project n outside the range. If n is outside the range, it will
return the opposite of the number whose image is n. */
{
return n ? n > 0 ? n <= 0X3FFFFFFF ? 0X3FFFFFFF + n : 0X3FFFFFFF - n :\
n >= 0XC0000000 ? 0XC0000000 + n : 0XC0000000 - n : 0;
}
Ideone测试和下载链接
在C中,
int
f(int n) {
static int r = 0;
if (r == 1) {r--; return -1 * n; };
r++;
return n;
}
知道这是为了什么语言会有帮助。我错过了什么吗?许多“解决方案”似乎过于复杂,坦率地说,并非如此工作(当我读到问题时)。