我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
适用于n=[0..2^31-1]
int f(int n) {
if (n & (1 << 31)) // highest bit set?
return -(n & ~(1 << 31)); // return negative of original n
else
return n | (1 << 31); // return n with highest bit set
}
其他回答
作为一名数学家,我想分享我对这个有趣问题的看法。我认为我有最有效的解决方案。
如果我没记错的话,只需翻转第一位,就可以将有符号的32位整数取反。例如,如果n=1001 1101 1110 1011 1110 0000 1110 1010,则-n=0001 1101 11101 1011 11100 0000 1110 010。
那么,我们如何定义一个函数f,它接受一个带符号的32位整数,并返回另一个有符号的32位数整数,该函数的属性是:接受两次f与翻转第一位相同?
让我重新表述这个问题,而不提整数之类的算术概念。
我们如何定义一个函数f,它接受长度为32的一系列0和1,并返回长度相同的一系列零和1,同时具有两次接受f与翻转第一位相同的性质?
观察:如果你能回答32位情况的上述问题,那么你也可以回答64位情况、100位情况等。你只需将f应用于前32位。
现在,如果你能回答2位案例的问题,哇!
是的,改变前2位就足够了。
这是伪代码
1. take n, which is a signed 32-bit integer.
2. swap the first bit and the second bit.
3. flip the first bit.
4. return the result.
备注:步骤2和步骤3可以概括为(a,b)-->(-b,a)。看起来很眼熟?这应该会让你想起平面的90度旋转以及乘以-1的平方根。
如果我只是单独展示了伪代码,而没有冗长的前奏,那么它看起来就像脱口而出的兔子,我想解释一下我是如何得到解决方案的。
Clojure解决方案:
(defmacro f [n] (if (list? n) `(- ~n) n))
也适用于任何大小的正整数和负整数、双整数和比率!
斯卡拉:
def f(x: Any): Any = x match {
case i: Int => new { override def hashCode = -i }
case i @ _ => i.hashCode
}
在Java中也是如此:
public static Object f(final Object x) {
if(x instanceof Integer) {
return new Object() {
@Override
public int hashCode() {
return -(Integer)x;
}
};
}
return x.hashCode();
}
我想我会先不看别人的答案就试试这个:
#include <stdio.h> #include <limits.h> #include <stdlib.h> int f(int n) { if(n > 0) { if(n % 2) return -(++n); else { return (--n); } } else { if(n % 2) return -(--n); else { return (++n); } } } int main(int argc, char* argv[]) { int n; for(n = INT_MIN; n < INT_MAX; n++) { int N = f(f(n)); if(N != -n) { fprintf(stderr, "FAIL! %i != %i\n", N, -n); } } n = INT_MAX; int N = f(f(n)); if(N != -n) { fprintf(stderr, "FAIL! n = %i\n", n); } return 0; }
输出:[无]
这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。
double f(double n)
{
if (n == (double)(int)n)
return n + 0.5;
else
return -(n - 0.5);
}
这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。
不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。