我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

C#表示2^32-1个数字的范围,所有整数32(int32.MinValue除外)

    Func<int, int> f = n =>
        n < 0
           ? (n & (1 << 30)) == (1 << 30) ? (n ^ (1 << 30)) : - (n | (1 << 30))
           : (n & (1 << 30)) == (1 << 30) ? -(n ^ (1 << 30)) : (n | (1 << 30));

    Console.WriteLine(f(f(Int32.MinValue + 1))); // -2147483648 + 1
    for (int i = -3; i <= 3  ; i++)
        Console.WriteLine(f(f(i)));
    Console.WriteLine(f(f(Int32.MaxValue))); // 2147483647

打印:

2147483647
3
2
1
0
-1
-2
-3
-2147483647

其他回答

根据您的平台,某些语言允许您在函数中保持状态。VB.Net,例如:

Function f(ByVal n As Integer) As Integer
    Static flag As Integer = -1
    flag *= -1

    Return n * flag
End Function

IIRC、C++也允许这样做。我怀疑他们正在寻找不同的解决方案。

另一个想法是,由于它们没有定义函数第一次调用的结果,因此可以使用奇数/均匀度来控制是否反转符号:

int f(int n)
{
   int sign = n>=0?1:-1;
   if (abs(n)%2 == 0)
      return ((abs(n)+1)*sign * -1;
   else
      return (abs(n)-1)*sign;
}

所有偶数的幅度加一,所有奇数的幅度减一。两次调用的结果大小相同,但在一次调用中,我们甚至交换了符号。在某些情况下,这不会起作用(-1,max或min int),但它的效果比迄今为止任何其他建议都要好得多。

记住你的上一个状态不是一个足够好的答案吗?

int f (int n)
{
    //if count 
    static int count = 0;

    if (count == 0)
        { 
            count = 1;
            return n;
        }

    if (n == 0)
        return 0;
    else if (n > 0)
    {
        count = 0;
        return abs(n)*(-1);
    } 
    else
    {
        count = 0;
        return abs(n);
    }
}

int main()
{
    int n = 42;
    std::cout << f(f(n))
}
int f(int n) {
    return ((n>0)? -1 : 1) * abs(n);
}

简单的Python解决方案之所以成为可能,是因为对f(x)应该输出的内容没有限制,只有f(f(x)):

def f(x):
    return (isinstance(x, tuple) and -x[0]) or (x,)

这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。

double f(double n)
{
    if (n == (double)(int)n)
        return n + 0.5;
    else
        return -(n - 0.5);
}

这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。

不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。