我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
C#表示2^32-1个数字的范围,所有整数32(int32.MinValue除外)
Func<int, int> f = n =>
n < 0
? (n & (1 << 30)) == (1 << 30) ? (n ^ (1 << 30)) : - (n | (1 << 30))
: (n & (1 << 30)) == (1 << 30) ? -(n ^ (1 << 30)) : (n | (1 << 30));
Console.WriteLine(f(f(Int32.MinValue + 1))); // -2147483648 + 1
for (int i = -3; i <= 3 ; i++)
Console.WriteLine(f(f(i)));
Console.WriteLine(f(f(Int32.MaxValue))); // 2147483647
打印:
2147483647
3
2
1
0
-1
-2
-3
-2147483647
其他回答
容易的:
function f($n) {
if ($n%2 == 0) return ($n+1)*-1;
else return ($n-1);
}
这个怎么样?
int nasty(int input)
{
return input + INT_MAX/2;
}
没有人说它必须是无国籍的。
int32 f(int32 x) {
static bool idempotent = false;
if (!idempotent) {
idempotent = true;
return -x;
} else {
return x;
}
}
作弊,但不如很多例子。更糟糕的是,查看堆栈以查看调用者的地址是否为-f,但这将更具可移植性(虽然不是线程安全的……线程安全版本将使用TLS)。更邪恶的是:
int32 f (int32 x) {
static int32 answer = -x;
return answer;
}
当然,对于MIN_INT32的情况,这两种方法都不太有效,但除非允许返回更宽的类型,否则对此您几乎无能为力。
这个Perl解决方案适用于整数、浮点数和字符串。
sub f {
my $n = shift;
return ref($n) ? -$$n : \$n;
}
尝试一些测试数据。
print $_, ' ', f(f($_)), "\n" for -2, 0, 1, 1.1, -3.3, 'foo' '-bar';
输出:
-2 2
0 0
1 -1
1.1 -1.1
-3.3 3.3
foo -foo
-bar +bar
f(x)=在二维笛卡尔坐标系中围绕原点逆时针旋转90度的点(x)。仅一个数字x的输入被假定为(x,0),并且具有y=0的输出被提供为单个数字x。
object f: (object) x {
if (x.length == 1)
x = (x, 0)
swap = x[0]
x[1] = x[0]
x[0] = -swap
if (x[1] == 0)
x = x[0]
return x