我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

怎么样

int f(int n)
{
    return -abs(n);
}

其他回答

我还没有看其他答案,我假设已经彻底讨论了按位技术。

我想我会在C++中想出一些邪恶的东西,希望不会上当受骗:

struct ImplicitlyConvertibleToInt
{
    operator int () const { return 0; }
};

int f(const ImplicitlyConvertibleToInt &) { return 0; }

ImplicitlyConvertibleToInt f(int & n)
{
    n = 0; // The problem specification didn't say n was const
    return ImplicitlyConvertibleToInt();
}

整个ImplicitlyConvertableToInt类型和重载是必需的,因为临时变量不能绑定到非常量引用。

当然,现在来看它,f(n)是否在-n之前执行是不确定的。

对于这种程度的邪恶,也许一个更好的解决方案是:

struct ComparesTrueToInt
{
    ComparesTrueToInt(int) { } // implicit construction from int
};
bool operator == (ComparesTrueToInt, int) const { return true; }

ComparesTrueToInt f(ComparesTrueToInt ct) { return ComparesTrueToInt(); }
int j = 0;

void int f(int n)
{    
    j++;

    if(j==2)
    {
       j = 0;
       return -n;
    }

    return n;
}

:D

f(n) { return -1 * abs(n) }

如何处理溢出问题?还是我错过了重点?

const unsigned long Magic = 0x8000000;

unsigned long f(unsigned long n)
{    
    if(n > Magic )
    {
        return Magic - n;
    }

    return n + Magic;
} 

0~2^31

MIN_INT不会失败:

int f(n) { return n < 0 ? -abs(n + 1) : -(abs(n) + 1); }