我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
怎么样
int f(int n)
{
return -abs(n);
}
其他回答
SQL Server中的解决方案
create function dbo.fn_fo(@num int) -- OUTER FUNCTION
RETURNS int
AS
begin
RETURN @num * -1
end
GO
create function dbo.fn_fi(@num int) -- INNER FUNCTION
RETURNS int
AS
begin
RETURN @num * -1
end
GO
declare @num AS int = -42
SELECT dbo.fn_fo(dbo.fn_fi(@num)) -- Gives (-42)
有些类似,但我只是想写下我的第一个想法(用C++)
#include <vector>
vector<int>* f(int n)
{
returnVector = new vector<int>();
returnVector->push_back(n);
return returnVector;
}
int f(vector<int>* n) { return -(n->at(0)); }
仅使用重载使f(f(n))实际调用两个不同的函数
:D
boolean inner = true;
int f(int input) {
if(inner) {
inner = false;
return input;
} else {
inner = true;
return -input;
}
}
这个是Python中的。适用于n的所有负值:
f = abs
本质上,函数必须将可用范围划分为大小为4的循环,其中-n位于n循环的另一端。但是,0必须是大小为1的循环的一部分,否则0->x->0->x!=-x.因为0是单独的,所以在我们的范围内必须有3个其他值(其大小是4的倍数)不在具有4个元素的正确循环中。
我选择这些额外的奇怪值为MIN_INT、MAX_INT和MIN_INT+1。此外,MIN_INT+1将正确映射到MAX_INT,但会被卡在那里而不能映射回来。我认为这是最好的妥协,因为它有一个很好的特性,即只有极端值不能正常工作。此外,这意味着它将适用于所有BigInt。
int f(int n):
if n == 0 or n == MIN_INT or n == MAX_INT: return n
return ((Math.abs(n) mod 2) * 2 - 1) * n + Math.sign(n)