我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
怎么样
int f(int n)
{
return -abs(n);
}
其他回答
在awk中,由于几乎没有任何信息被传递,因此必须求助于允许将状态信息作为函数返回的一部分传递的方法,而不会危及传递内容的可用性:
jot - -5 5 | mawk 'function _(__,___) {
return (__~(___=" ")) \
\
? substr("",sub("^[ ]?[+- ]*",\
substr(" -",__~__,index("_"___,___)-\
(__~"[-]")),__))\
(__~"[-]"?"":___)__\
: (+__<-__?___:(___)___)__
} BEGIN { CONVFMT=OFMT="%.17g"
} {
print "orig", +(__=$(__<__))<-__?__:" "__,
"f(n)....", _(__),_(_(__)),_(_(_(__))),
_(_(_(_(__)))), _(_(_(_(_(__)))))
}' |gcat -n | lgp3 5
1 orig -5 f(n).... -5 5 -5 5 -5
2 orig -4 f(n).... -4 4 -4 4 -4
3 orig -3 f(n).... -3 3 -3 3 -3
4 orig -2 f(n).... -2 2 -2 2 -2
5 orig -1 f(n).... -1 1 -1 1 -1
6 orig 0 f(n).... 0 -0 0 -0 0
7 orig 1 f(n).... 1 -1 1 -1 1
8 orig 2 f(n).... 2 -2 2 -2 2
9 orig 3 f(n).... 3 -3 3 -3 3
10 orig 4 f(n).... 4 -4 4 -4 4
11 orig 5 f(n).... 5 -5 5 -5 5
因此,这样做的限制是,只有整数或浮点值已经是字符串格式,可以在没有风险的情况下使用,因为额外的ASCII空间\040作为状态信息
这种方法的优点是
它愿意为您提供“负零”,对于绝对值小于2^53的整数,简单地添加加号,即+f(f(_))函数调用本身将具有隐式代表您完成类型铸造,结果值将再次为数字对于大整数,只需减去()任何前导空格轻松处理大整数,而不会丢失精度从类型转换为双精度浮点
`
1 orig -99999999999999999999999999999999
f(n)....
-99999999999999999999999999999999
99999999999999999999999999999999
-99999999999999999999999999999999
99999999999999999999999999999999
-99999999999999999999999999999999
2 orig -1239999999999999999999999999999
f(n).... -1239999999999999999999999999999
1239999999999999999999999999999
-1239999999999999999999999999999
1239999999999999999999999999999
-1239999999999999999999999999999`
使用循环置换方法来实现这一点。
-b a b-a
a b-a-b
在微不足道的情况下f(0)返回0
对不起,我的电话回答很粗糙,28日后我将发布完整版本(现在正在检查…)简单地说,假设f(n)是一个循环排列,问题是如何构造它。
定义fk=f(f(f)f(…f(n))))(k fs)情况k=20.微不足道的情况f(0)返回01.分组,在情况k=2时,分组:{0} {1,2} {3,4} ... {n,n+1 |(n+1)%2=0}注意:我只使用Z+,因为结构不需要使用负数。2.构造排列:如果n%2=0,那么a=n-1 b=n如果n%2=1,则a=n b=n+1
这将产生相同的排列,因为n和f(n)在同一组中。
注意排列为P返回P(n)
对于k=2t,只做上面相同的事情,只做MOD k。对于k=2t-1,虽然该方法有效,但毫无意义,啊?(f(n)=-n正常)
有些类似,但我只是想写下我的第一个想法(用C++)
#include <vector>
vector<int>* f(int n)
{
returnVector = new vector<int>();
returnVector->push_back(n);
return returnVector;
}
int f(vector<int>* n) { return -(n->at(0)); }
仅使用重载使f(f(n))实际调用两个不同的函数
f#中的简单解决方案(不使用“技巧”)
let rec f n =
if n = 0 then 0
elif n > 0 then
if (f (n - 1) <> n) then n + 1
else -(n - 1)
else
if (f (-(n - 1)) = n) then n - 1
else -(n + 1)
我可以想象,使用第31位作为虚(I)位将是一种支持一半总范围的方法。