我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

使用复数,您可以有效地将否定数字的任务分为两个步骤:

将n乘以i,得到n*i,n逆时针旋转90°再乘以i,得到-n

最棒的是,您不需要任何特殊的处理代码。只要乘以i就可以了。

但不允许使用复数。因此,您必须使用部分数据范围创建自己的虚拟轴。由于需要的虚(中间)值与初始值一样多,因此只剩下一半的数据范围。

我试图在下图中显示这一点,假设有符号的8位数据。您必须将其缩放为32位整数。初始n的允许范围为-64到+63。下面是函数对正n的作用:

如果n在0..63(初始范围)内,函数调用将添加64,将n映射到范围64..127(中间范围)如果n在64..127(中间范围)内,则函数从64中减去n,将n映射到范围0..-63

对于负n,函数使用中间范围-65..-128。

其他回答

本质上,函数必须将可用范围划分为大小为4的循环,其中-n位于n循环的另一端。但是,0必须是大小为1的循环的一部分,否则0->x->0->x!=-x.因为0是单独的,所以在我们的范围内必须有3个其他值(其大小是4的倍数)不在具有4个元素的正确循环中。

我选择这些额外的奇怪值为MIN_INT、MAX_INT和MIN_INT+1。此外,MIN_INT+1将正确映射到MAX_INT,但会被卡在那里而不能映射回来。我认为这是最好的妥协,因为它有一个很好的特性,即只有极端值不能正常工作。此外,这意味着它将适用于所有BigInt。

int f(int n):
    if n == 0 or n == MIN_INT or n == MAX_INT: return n
    return ((Math.abs(n) mod 2) * 2 - 1) * n + Math.sign(n)

使用全局。。。但事实如此?

bool done = false
f(int n)
{
  int out = n;
  if(!done)
  {  
      out = n * -1;
      done = true;
   }
   return out;
}

Scala中使用隐式转换的一个奇怪且唯一稍微聪明的解决方案:

sealed trait IntWrapper {
  val n: Int
}

case class First(n: Int) extends IntWrapper
case class Second(n: Int) extends IntWrapper
case class Last(n: Int) extends IntWrapper

implicit def int2wrapper(n: Int) = First(n)
implicit def wrapper2int(w: IntWrapper) = w.n

def f(n: IntWrapper) = n match {
  case First(x) => Second(x)
  case Second(x) => Last(-x)
}

我认为这不是一个很好的主意。

记住你的上一个状态不是一个足够好的答案吗?

int f (int n)
{
    //if count 
    static int count = 0;

    if (count == 0)
        { 
            count = 1;
            return n;
        }

    if (n == 0)
        return 0;
    else if (n > 0)
    {
        count = 0;
        return abs(n)*(-1);
    } 
    else
    {
        count = 0;
        return abs(n);
    }
}

int main()
{
    int n = 42;
    std::cout << f(f(n))
}

也许是作弊?(python)

def f(n):    
    if isinstance(n, list):
        return -n[0]
    else:
        return [n,0]    
n = 4
print f(f(n))

--output--
-4