我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
Java脚本
function f(n) {
return typeof n === "number" ?
function() {return -n} :
n();
}
其他回答
从来没有人说过f(x)必须是同一类型。
def f(x):
if type(x) == list:
return -x[0]
return [x]
f(2) => [2]
f(f(2)) => -2
使用复数,您可以有效地将否定数字的任务分为两个步骤:
将n乘以i,得到n*i,n逆时针旋转90°再乘以i,得到-n
最棒的是,您不需要任何特殊的处理代码。只要乘以i就可以了。
但不允许使用复数。因此,您必须使用部分数据范围创建自己的虚拟轴。由于需要的虚(中间)值与初始值一样多,因此只剩下一半的数据范围。
我试图在下图中显示这一点,假设有符号的8位数据。您必须将其缩放为32位整数。初始n的允许范围为-64到+63。下面是函数对正n的作用:
如果n在0..63(初始范围)内,函数调用将添加64,将n映射到范围64..127(中间范围)如果n在64..127(中间范围)内,则函数从64中减去n,将n映射到范围0..-63
对于负n,函数使用中间范围-65..-128。
另一个作弊解决方案。我们使用允许运算符重载的语言。然后我们让f(x)返回重载==的值,以始终返回true。这似乎与问题描述相符,但显然违背了谜题的精神。
Ruby示例:
class Cheat
def ==(n)
true
end
end
def f(n)
Cheat.new
end
这给了我们:
>> f(f(1)) == -1
=> true
而且(不太令人惊讶)
>> f(f(1)) == "hello world"
=> true
有些类似,但我只是想写下我的第一个想法(用C++)
#include <vector>
vector<int>* f(int n)
{
returnVector = new vector<int>();
returnVector->push_back(n);
return returnVector;
}
int f(vector<int>* n) { return -(n->at(0)); }
仅使用重载使f(f(n))实际调用两个不同的函数
这个怎么样:
do
local function makeFunc()
local var
return function(x)
if x == true then
return -var
else
var = x
return true
end
end
end
f = makeFunc()
end
print(f(f(20000)))