我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

使用全局。。。但事实如此?

bool done = false
f(int n)
{
  int out = n;
  if(!done)
  {  
      out = n * -1;
      done = true;
   }
   return out;
}

其他回答

#include <cmath>

int f(int n)
{
    static int count = 0;
    return ::cos(M_PI * count++) * n;
}

使用全局。。。但事实如此?

bool done = false
f(int n)
{
  int out = n;
  if(!done)
  {  
      out = n * -1;
      done = true;
   }
   return out;
}
int f(int n) {
    return ((n>0)? -1 : 1) * abs(n);
}

在C中,

int 
f(int n) {
     static int r = 0;
     if (r == 1) {r--; return -1 * n; };
     r++;
     return n;
}

知道这是为了什么语言会有帮助。我错过了什么吗?许多“解决方案”似乎过于复杂,坦率地说,并非如此工作(当我读到问题时)。

虽然问题说n必须是32位int,但它没有说参数或返回类型必须是32比特int0

private final long MAGIC_BIT=1<<38;
long f(long n) {
    return n & MAGIC_BIT != 0 ? -(n & !MAGIC_BIT) : n | MAGIC_BIT;
}

编辑:

这实际上是一个很好的面试问题。最好的答案是难以或不可能回答的,因为它迫使人们仔细思考,你可以观察并寻找:

他们会放弃吗?他们说这很愚蠢吗?他们是否尝试独特的方法?他们在处理问题时是否与您沟通?他们是否要求进一步细化要求?

etc.

永远不要只回答行为问题,除非你有一个非常好的答案。始终保持愉快,并尝试让提问者参与进来。不要沮丧,不要过早放弃!如果你真的一无所获,尝试一些完全非法的、可能奏效的方法,你将获得几乎全部的学分。