我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
f(n) { return -1 * abs(n) }
如何处理溢出问题?还是我错过了重点?
其他回答
该问题表示“32位有符号整数”,但没有指定它们是2个补码还是1个补码。
如果使用1补码,则所有2^32值都出现在长度为4的循环中-不需要零的特殊情况,也不需要条件。
在C中:
int32_t f(int32_t x)
{
return (((x & 0xFFFFU) << 16) | ((x & 0xFFFF0000U) >> 16)) ^ 0xFFFFU;
}
这项工作由
交换高位和低位16位块反转其中一个块
两次传递后,我们得到原始值的位逆。在一中补语表示等同于否定。
示例:
Pass | x
-----+-------------------
0 | 00000001 (+1)
1 | 0001FFFF (+131071)
2 | FFFFFFFE (-1)
3 | FFFE0000 (-131071)
4 | 00000001 (+1)
Pass | x
-----+-------------------
0 | 00000000 (+0)
1 | 0000FFFF (+65535)
2 | FFFFFFFF (-0)
3 | FFFF0000 (-65535)
4 | 00000000 (+0)
从来没有人说过f(x)必须是同一类型。
def f(x):
if type(x) == list:
return -x[0]
return [x]
f(2) => [2]
f(f(2)) => -2
除int.MaxValue和int.MinValue以外的工作
public static int f(int x)
{
if (x == 0) return 0;
if ((x % 2) != 0)
return x * -1 + (-1 *x) / (Math.Abs(x));
else
return x - x / (Math.Abs(x));
}
上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。
红宝石:
def f( n )
return 0 unless n != 0
( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
int f(const int n) {
static int last_n;
if (n == 0)
return 0;
else if (n == last_n)
return -n;
else
{
last_n = n;
return n;
}
}
哈克,但正确。