我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

也许是作弊?(python)

def f(n):    
    if isinstance(n, list):
        return -n[0]
    else:
        return [n,0]    
n = 4
print f(f(n))

--output--
-4

其他回答

我还没有看其他答案,我假设已经彻底讨论了按位技术。

我想我会在C++中想出一些邪恶的东西,希望不会上当受骗:

struct ImplicitlyConvertibleToInt
{
    operator int () const { return 0; }
};

int f(const ImplicitlyConvertibleToInt &) { return 0; }

ImplicitlyConvertibleToInt f(int & n)
{
    n = 0; // The problem specification didn't say n was const
    return ImplicitlyConvertibleToInt();
}

整个ImplicitlyConvertableToInt类型和重载是必需的,因为临时变量不能绑定到非常量引用。

当然,现在来看它,f(n)是否在-n之前执行是不确定的。

对于这种程度的邪恶,也许一个更好的解决方案是:

struct ComparesTrueToInt
{
    ComparesTrueToInt(int) { } // implicit construction from int
};
bool operator == (ComparesTrueToInt, int) const { return true; }

ComparesTrueToInt f(ComparesTrueToInt ct) { return ComparesTrueToInt(); }
int f(int n)
{
  static long counter=0;
  counter++;
  if(counter%2==0)
    return -n;
  else
    return n;
}

另一种方法是将状态保持在一位,并在负数的情况下翻转它,注意二进制表示。。。限制为2^29

整数ffn(整数n){

    n = n ^ (1 << 30); //flip the bit
    if (n>0)// if negative then there's a two's complement
    {
        if (n & (1<<30))
        {
            return n;
        }
        else
        {
            return -n;
        }
    }
    else
    {
        if (n & (1<<30))
        {
            return -n;
        }
        else
        {
            return n;
        }
    }


}

f#中的简单解决方案(不使用“技巧”)

let rec f n =
    if n = 0 then 0
    elif n > 0 then
        if (f (n - 1) <> n) then n + 1
        else -(n - 1)
    else
        if (f (-(n - 1)) = n) then n - 1
        else -(n + 1) 

:D

boolean inner = true;

int f(int input) {
   if(inner) {
      inner = false;
      return input;
   } else {
      inner = true;
      return -input;
   }
}