我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这里有一个证明,如果不使用额外信息(除了32位的int),那么对于所有数字,这样的函数都不可能存在:

我们必须使f(0)=0。(证明:假设f(0)=x,则f(x)=f(f(0))=-0=0。现在,-x=f(f(x))=f(0)=x,这意味着x=0。)

此外,对于任何x和y,假设f(x)=y。那么我们希望f(y)=-x。并且f(f(y))=-y=>f(-x)=-y。总结一下:如果f(x)=y,那么f(-x)=-y,f(y)=-x,f(-y)=x。

因此,我们需要将除0之外的所有整数分成4个集合,但我们有奇数个这样的整数;不仅如此,如果我们去掉没有正对应的整数,我们仍然有2(mod4)个数。

如果我们去掉剩下的2个最大数(通过abs值),我们可以得到函数:

int sign(int n)
{
    if(n>0)
        return 1;
    else 
        return -1;
}

int f(int n)
{
    if(n==0) return 0;
    switch(abs(n)%2)
    {
        case 1:
             return sign(n)*(abs(n)+1);
        case 0:
             return -sign(n)*(abs(n)-1);
    }
}   

当然,另一种选择是不遵守0,并获得我们删除的2个数字作为奖励。(但这只是一个愚蠢的假设。)

其他回答

事实上,我并没有试图给出问题本身的解决方案,但我有几点意见,因为问题表明,提出这个问题是(工作?)面试的一部分:

我会先问“为什么需要这样的函数?这是什么更大的问题?”而不是试图当场解决实际提出的问题。这表明了我是如何思考和解决这样的问题的。谁知道?这甚至可能是在一次采访中首先提出这个问题的真正原因。如果答案是“没关系,假设它是需要的,并告诉我如何设计这个功能。”我会继续这样做。然后,我将编写我将使用的C#测试用例代码(显而易见:从int.MinValue到int.MaxValue的循环,对于该范围内的每个n调用f(f(n)),并检查结果是-n),告诉我将使用测试驱动开发来获得这样的函数。只有当面试官继续要求我解决所提出的问题时,我才真正开始在面试过程中胡乱写下伪代码,试图得到某种答案。然而,如果面试官能说明公司的情况,我真的不认为我会跳下去接受这份工作。。。

哦,这个答案假设面试是针对一个与C#编程相关的职位。如果面试的是与数学相关的职位,那当然是一个愚蠢的答案

根据微软/谷歌的面试官通常在面试中提出的问题,我认为提问者指的是一种创新、轻量级、简单的解决方案,它将使用按位操作,而不是那些复杂的高级答案。

灵感来自@eipipuz的回答,我编写了这个C++函数(但没有运行它):

int32_t f(int32_t n){
    int32_t temp = n & 00111111111111111111111111111111;
    x = n >> 30;
    x++;
    x = x << 30;
    return x | temp;
}

它将n的最左边的两位存储在x中,将x加1,然后再次将其替换为n的最左侧的两位。

如果我们继续以另一个f(n)作为参数n运行f(n,则最左边的两个位将如下旋转:

00 --> 01 --> 10 --> 11 --> 00 ...

请注意,最右边的30位不变。8位整数示例:

示例1:

>f(00001111)=01001111>f(01001111)=10001111[这是原始值的负值,00001111]

示例2:

>f(11101010)=00101010>f(00101010)=01101010[这是原始值11101010的负值]

C++

struct Value
{
  int value;
  Value(int v) : value(v) {}
  operator int () { return -value; }
};


Value f(Value input)
{
  return input;
}

也许是作弊?(python)

def f(n):    
    if isinstance(n, list):
        return -n[0]
    else:
        return [n,0]    
n = 4
print f(f(n))

--output--
-4

该问题表示“32位有符号整数”,但没有指定它们是2个补码还是1个补码。

如果使用1补码,则所有2^32值都出现在长度为4的循环中-不需要零的特殊情况,也不需要条件。

在C中:

int32_t f(int32_t x)
{
  return (((x & 0xFFFFU) << 16) | ((x & 0xFFFF0000U) >> 16)) ^ 0xFFFFU;
}

这项工作由

交换高位和低位16位块反转其中一个块

两次传递后,我们得到原始值的位逆。在一中补语表示等同于否定。

示例:

Pass |        x
-----+-------------------
   0 | 00000001      (+1)
   1 | 0001FFFF (+131071)
   2 | FFFFFFFE      (-1)
   3 | FFFE0000 (-131071)
   4 | 00000001      (+1)

Pass |        x
-----+-------------------
   0 | 00000000      (+0)
   1 | 0000FFFF  (+65535)
   2 | FFFFFFFF      (-0)
   3 | FFFF0000  (-65535)
   4 | 00000000      (+0)