我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
这里有一个证明,如果不使用额外信息(除了32位的int),那么对于所有数字,这样的函数都不可能存在:
我们必须使f(0)=0。(证明:假设f(0)=x,则f(x)=f(f(0))=-0=0。现在,-x=f(f(x))=f(0)=x,这意味着x=0。)
此外,对于任何x和y,假设f(x)=y。那么我们希望f(y)=-x。并且f(f(y))=-y=>f(-x)=-y。总结一下:如果f(x)=y,那么f(-x)=-y,f(y)=-x,f(-y)=x。
因此,我们需要将除0之外的所有整数分成4个集合,但我们有奇数个这样的整数;不仅如此,如果我们去掉没有正对应的整数,我们仍然有2(mod4)个数。
如果我们去掉剩下的2个最大数(通过abs值),我们可以得到函数:
int sign(int n)
{
if(n>0)
return 1;
else
return -1;
}
int f(int n)
{
if(n==0) return 0;
switch(abs(n)%2)
{
case 1:
return sign(n)*(abs(n)+1);
case 0:
return -sign(n)*(abs(n)-1);
}
}
当然,另一种选择是不遵守0,并获得我们删除的2个数字作为奖励。(但这只是一个愚蠢的假设。)
其他回答
这个问题并没有说明函数f的输入类型和返回值必须是什么(至少不是你给出的方式)。。。
…只是当n是32位整数时,f(f(n))=-n
那么,怎么样
Int64 f(Int64 n)
{
return(n > Int32.MaxValue ?
-(n - 4L * Int32.MaxValue):
n + 4L * Int32.MaxValue);
}
如果n是32位整数,则语句f(f(n))==-n将为真。
显然,这种方法可以扩展到更大范围的数字。。。
我认为最大的可能范围是暗示模块化算术解决方案。在一些模基M中,有一个数,当平方等于M-1(等于-1)。例如,如果M=13,5*5=25,25 mod 13=12(=-1)总之,这里有一些M=2**32-3的python代码。
def f(x):
m=2**32-3;
halfm=m//2;
i_mod_m=1849436465
if abs( x ) >halfm:
raise "too big"
if x<0:
x+=m
x=(i_mod_m*x) % m
if (x>halfm):
x-=m
return x;
注意,有3个值不适用于2**31-1、-(2**31-1)和-(2*#31)
对于所有32位值(注意,-0是-2147483648)
int rotate(int x)
{
static const int split = INT_MAX / 2 + 1;
static const int negativeSplit = INT_MIN / 2 + 1;
if (x == INT_MAX)
return INT_MIN;
if (x == INT_MIN)
return x + 1;
if (x >= split)
return x + 1 - INT_MIN;
if (x >= 0)
return INT_MAX - x;
if (x >= negativeSplit)
return INT_MIN - x + 1;
return split -(negativeSplit - x);
}
基本上需要将每个-x=>x=>-x循环与y=>-y=>y循环配对。所以我把裂口的两边配对。
例如,对于4位整数:
0 => 7 => -8 => -7 => 0
1 => 6 => -1 => -6 => 1
2 => 5 => -2 => -5 => 2
3 => 4 => -3 => -4 => 3
我参加这个聚会迟到了,现在可能是墓地了。但我有两个贡献,灵感来自viraptor先前使用lambda的Python答案。读者可能认为该解决方案仅在非类型化语言中可行,而在类型化语言中将需要一些明确的额外标记。
但下面是Haskell中的解决方案1(我不是Haskell专家)。它有点作弊,因为从技术上讲,两个f是两个不同的实现。(一个f::Int->()->Int,另一个f::(()->Int)->Int)
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FunctionalDependencies #-}
module Main where
class Tran σ τ | σ -> τ where
tran :: σ -> τ
instance Tran Int (() -> Int) where
tran n = \_ -> (-n)
instance Tran (() -> Int) Int where
tran g = g ()
f :: Tran σ τ => σ -> τ
f = tran
main :: IO ()
main = do
print $ f (f (42 :: Int)) -- --> -42
print $ f (f (0 :: Int)) -- --> 0
print $ f (f (-69 :: Int)) -- --> 69
接下来是Typed Racket中的解决方案2。这一个满足了最大可能域的属性,因为Racket中的Number最多包含复数:
#lang typed/racket
(: f (case->
[Number -> (-> Number)]
[(-> Number) -> Number]))
(define (f x)
(if (number? x) (λ () (- x)) (x)))
(f (f 42)) ; --> -42
(f (f 0)) ; --> 0
(f (f -69)) ; --> 69
(f (f 3/4)) ; --> -3/4
(f (f 8+7i)) ; --> -8-7i
我承认我会作弊,但还是符合要求。这是编程魔术,而不是数学。它适用于整个范围,-2^31除外。
int f(int n)
{
static bool eFlag = false; // Only executed once
eFlag = !eFlag;
return eFlag?-n:n;
}