我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

根据您的平台,某些语言允许您在函数中保持状态。VB.Net,例如:

Function f(ByVal n As Integer) As Integer
    Static flag As Integer = -1
    flag *= -1

    Return n * flag
End Function

IIRC、C++也允许这样做。我怀疑他们正在寻找不同的解决方案。

另一个想法是,由于它们没有定义函数第一次调用的结果,因此可以使用奇数/均匀度来控制是否反转符号:

int f(int n)
{
   int sign = n>=0?1:-1;
   if (abs(n)%2 == 0)
      return ((abs(n)+1)*sign * -1;
   else
      return (abs(n)-1)*sign;
}

所有偶数的幅度加一,所有奇数的幅度减一。两次调用的结果大小相同,但在一次调用中,我们甚至交换了符号。在某些情况下,这不会起作用(-1,max或min int),但它的效果比迄今为止任何其他建议都要好得多。

其他回答

int f(int n)
{
  static long counter=0;
  counter++;
  if(counter%2==0)
    return -n;
  else
    return n;
}

这将在非常广泛的数字范围内发挥作用:

    static int f(int n)
    {
        int lastBit = int.MaxValue;
        lastBit++;
        int secondLastBit = lastBit >> 1;
        int tuple = lastBit | secondLastBit;
        if ((n & tuple) == tuple)
            return n + lastBit;
        if ((n & tuple) == 0)
            return n + lastBit;
        return -(n + lastBit);
    }

我最初的方法是使用最后一位作为检查位,以了解我们在第一次或第二次调用中的位置。基本上,我会在第一次调用后将此位设置为1,以向第二次调用发出第一次调用已经通过的信号。但是,这种方法被负数所击败,负数的最后一位在第一次调用期间已经到达1。

同样的理论适用于大多数负数的倒数第二位。但是,通常发生的情况是,大多数情况下,最后一位和第二位是相同的。它们要么都是负数的1,要么都是正数的0。

所以我的最后一个方法是检查它们是否都是1或都是0,这意味着在大多数情况下这是第一次调用。如果最后一位与第二个最后一位不同,那么我假设我们在第二次调用,然后简单地重新反转最后一位。显然,对于使用最后两位的非常大的数字来说,这不起作用。但是,它再次适用于非常广泛的数字。

C++

struct Value
{
  int value;
  Value(int v) : value(v) {}
  operator int () { return -value; }
};


Value f(Value input)
{
  return input;
}

我相信这符合所有要求。没有什么规定参数必须是32位有符号整数,只有你传入的值“n”是。

long long f(long long n)
{
    int high_int = n >> 32;
    int low_int  = n & 0xFFFFFFFF;

    if (high_int == 0) {
        return 0x100000000LL + low_int;
    } else {
        return -low_int;
    }
}
#include <cmath>

int f(int n)
{
    static int count = 0;
    return ::cos(M_PI * count++) * n;
}