我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

少于50个字符(C#)

int f(int n) { return (n <= 0) ? n : f(-n); }

或更容易阅读:

static int f(int n) { 
  if (n <= 0)
    return n;
  else 
    return f(-n);
}

要测试

static void Main(string[] args) {
    for (int n = int.MinValue; n < int.MaxValue; n+=1) {
        Console.Out.WriteLine("Value: " + n + " Result: " + f(f(n)));
    }
}

它有效(假设我正确理解问题)

其他回答

根据微软/谷歌的面试官通常在面试中提出的问题,我认为提问者指的是一种创新、轻量级、简单的解决方案,它将使用按位操作,而不是那些复杂的高级答案。

灵感来自@eipipuz的回答,我编写了这个C++函数(但没有运行它):

int32_t f(int32_t n){
    int32_t temp = n & 00111111111111111111111111111111;
    x = n >> 30;
    x++;
    x = x << 30;
    return x | temp;
}

它将n的最左边的两位存储在x中,将x加1,然后再次将其替换为n的最左侧的两位。

如果我们继续以另一个f(n)作为参数n运行f(n,则最左边的两个位将如下旋转:

00 --> 01 --> 10 --> 11 --> 00 ...

请注意,最右边的30位不变。8位整数示例:

示例1:

>f(00001111)=01001111>f(01001111)=10001111[这是原始值的负值,00001111]

示例2:

>f(11101010)=00101010>f(00101010)=01101010[这是原始值11101010的负值]

另一种方法是将状态保持在一位,并在负数的情况下翻转它,注意二进制表示。。。限制为2^29

整数ffn(整数n){

    n = n ^ (1 << 30); //flip the bit
    if (n>0)// if negative then there's a two's complement
    {
        if (n & (1<<30))
        {
            return n;
        }
        else
        {
            return -n;
        }
    }
    else
    {
        if (n & (1<<30))
        {
            return -n;
        }
        else
        {
            return n;
        }
    }


}

我认为这些问题的答案最好用图表直观地解释。当我们忽略零时,我们可以将整数分成4个数的小集合:

 1  → 2    3  → 4    5  → 6
 ↑    ↓    ↑    ↓    ↑    ↓   ...
-2 ← -1   -4 ← -3   -6 ← -5

这很容易翻译成代码。注意,偶数改变符号,奇数增加或减少1。在C#中,它看起来像这样:

public static int f(int x)
{
    if(x == 0)
        return 0;

    if(x > 0)
        return (x % 2 == 0) ? -x+1 : x+1;

    // we know x is negative at this point
    return (x % 2 == 0) ? -x-1 : x-1;
}

当然,您可以通过使用巧妙的技巧来缩短此方法,但我认为这段代码最好地解释了它本身。

然后是范围。32位整数的范围从-2^31到2^31-1。数字2^31-1、-2^31-1和-2^31超出了f(x)的范围,因为缺少数字2^31。

将n转换为符号和幅度表示;添加范围的1/4;转换回。


    #define STYPE int
    STYPE sign_bit = (unsigned STYPE) 1 << ( sizeof ( STYPE ) * 8  - 1 );
    STYPE f ( STYPE f )
    {
        unsigned STYPE smf = f > 0 ? f : -f | sign_bit;
        smf += sign_bit >> 1;
        return smf & sign_bit ? -( smf & ~sign_bit ) : smf;
    }
const unsigned long Magic = 0x8000000;

unsigned long f(unsigned long n)
{    
    if(n > Magic )
    {
        return Magic - n;
    }

    return n + Magic;
} 

0~2^31