我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

另一种方法是将状态保持在一位,并在负数的情况下翻转它,注意二进制表示。。。限制为2^29

整数ffn(整数n){

    n = n ^ (1 << 30); //flip the bit
    if (n>0)// if negative then there's a two's complement
    {
        if (n & (1<<30))
        {
            return n;
        }
        else
        {
            return -n;
        }
    }
    else
    {
        if (n & (1<<30))
        {
            return -n;
        }
        else
        {
            return n;
        }
    }


}

其他回答

这个Perl解决方案适用于整数、浮点数和字符串。

sub f {
    my $n = shift;
    return ref($n) ? -$$n : \$n;
}

尝试一些测试数据。

print $_, ' ', f(f($_)), "\n" for -2, 0, 1, 1.1, -3.3, 'foo' '-bar';

输出:

-2 2
0 0
1 -1
1.1 -1.1
-3.3 3.3
foo -foo
-bar +bar

在PHP中

function f($n) {
    if(is_int($n)) {
        return (string)$n;
    }
    else {
        return (int)$n * (-1);
    }
}

我相信你能理解其他语言的这种方法的精神。为了让不使用弱类型语言的人更清楚,我明确地将其转换回int。对于某些语言,您必须重载该函数。

这个解决方案的妙处在于,无论您是从字符串还是整数开始,它都是有效的,并且在返回f(n)时不会明显改变任何内容。

在我看来,面试官在问,“这位应聘者是否知道如何标记数据以供以后操作”,以及“这位应聘人员是否知道如何在最少更改数据的情况下标记数据?”你可以使用双精度、字符串或任何其他你想使用的数据类型来实现这一点。

MIN_INT不会失败:

int f(n) { return n < 0 ? -abs(n + 1) : -(abs(n) + 1); }

这里有一个解决方案,其灵感来自于不能使用复数来解决这个问题的要求或声明。

乘以-1的平方根是一个想法,但似乎失败了,因为-1没有整数的平方根。但是,使用mathematica这样的程序可以得出如下公式

(18494364652+1)模(232-3)=0。

这几乎和平方根为-1一样好。函数的结果必须是有符号整数。因此,我将使用一个修改的模运算mods(x,n),它返回与x模n最接近0的整数y。只有极少数编程语言能够成功地进行模运算,但它很容易被定义。例如,在python中,它是:

def mods(x, n):
    y = x % n
    if y > n/2: y-= n
    return y

使用上面的公式,问题现在可以解决为

def f(x):
    return mods(x*1849436465, 2**32-3)

对于[-231-2231-2]范围内的所有整数,这满足f(f(x))=-x。f(x)的结果也在这个范围内,但当然计算需要64位整数。

我想我会先不看别人的答案就试试这个:

#include <stdio.h>
#include <limits.h>
#include <stdlib.h>

int f(int n) {
    if(n > 0) {  
        if(n % 2)
            return -(++n);
        else {
            return (--n);

        }
    }
    else {
        if(n % 2)
            return -(--n);
        else {
            return (++n);

        }
    }
}

int main(int argc, char* argv[]) {
    int n;
    for(n = INT_MIN; n < INT_MAX; n++) {
        int N = f(f(n));

        if(N != -n) {
            fprintf(stderr, "FAIL! %i != %i\n", N, -n);
        }
    }
    n = INT_MAX;
    int N = f(f(n));
    if(N != -n) {
        fprintf(stderr, "FAIL! n = %i\n", n);
    }
    return 0;
}

输出:[无]