我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
f#中的简单解决方案(不使用“技巧”)
let rec f n =
if n = 0 then 0
elif n > 0 then
if (f (n - 1) <> n) then n + 1
else -(n - 1)
else
if (f (-(n - 1)) = n) then n - 1
else -(n + 1)
其他回答
我不知道这是否完全正确,但一个简单的标志不起作用吗?在C语言中,使用静态局部变量,我成功地做到了这一点:
int main()
{
int n = -256; // 32-bit signed integer
printf("%d", f(f(n)));
}
int f(int n){
static int x = 0; // not returning negative;
switch(x){
case 0:
x = 1;
return n;
break;
case 1:
x = 0;
return -n;
break;
default:
return -999;
break;
}
}
f#中的简单解决方案(不使用“技巧”)
let rec f n =
if n = 0 then 0
elif n > 0 then
if (f (n - 1) <> n) then n + 1
else -(n - 1)
else
if (f (-(n - 1)) = n) then n - 1
else -(n + 1)
由于C++中的重载:
double f(int var)
{
return double(var);
}
int f(double var)
{
return -int(var);
}
int main(){
int n(42);
std::cout<<f(f(n));
}
上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。
红宝石:
def f( n )
return 0 unless n != 0
( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
它通过保存状态来作弊,但它有效,将操作分成两部分:-n=(~n+1)对于整数
int f(int n) {
static int a = 1;
a = !a;
if (a) {
return (~n);
} else {
return (n+1);
}
}