我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
我的答案是正确的。。。50%的时间,所有的时间。
int f (int num) {
if (rand () / (double) RAND_MAX > 0.5)
return ~num + 1;
return num;
}
其他回答
对于所有32位值(注意,-0是-2147483648)
int rotate(int x)
{
static const int split = INT_MAX / 2 + 1;
static const int negativeSplit = INT_MIN / 2 + 1;
if (x == INT_MAX)
return INT_MIN;
if (x == INT_MIN)
return x + 1;
if (x >= split)
return x + 1 - INT_MIN;
if (x >= 0)
return INT_MAX - x;
if (x >= negativeSplit)
return INT_MIN - x + 1;
return split -(negativeSplit - x);
}
基本上需要将每个-x=>x=>-x循环与y=>-y=>y循环配对。所以我把裂口的两边配对。
例如,对于4位整数:
0 => 7 => -8 => -7 => 0
1 => 6 => -1 => -6 => 1
2 => 5 => -2 => -5 => 2
3 => 4 => -3 => -4 => 3
我想我会先不看别人的答案就试试这个:
#include <stdio.h> #include <limits.h> #include <stdlib.h> int f(int n) { if(n > 0) { if(n % 2) return -(++n); else { return (--n); } } else { if(n % 2) return -(--n); else { return (++n); } } } int main(int argc, char* argv[]) { int n; for(n = INT_MIN; n < INT_MAX; n++) { int N = f(f(n)); if(N != -n) { fprintf(stderr, "FAIL! %i != %i\n", N, -n); } } n = INT_MAX; int N = f(f(n)); if(N != -n) { fprintf(stderr, "FAIL! n = %i\n", n); } return 0; }
输出:[无]
使用问题中给出的信息,您可以
从2-完成转换为符号位表示如果设置了最后一位,则翻转符号位和最后一位;否则,只翻转最后一位转换回2-完成。
所以你基本上是奇数->偶数->奇数或偶数->奇数->偶数,只对偶数更改符号。唯一不适用的数字是-2^31
代码:
function f(x) {
var neg = x < 0;
x = Math.abs(x) ^ 1;
if (x & 1) {
neg = !neg;
}
return neg ? -x : x;
}
Lua:
function f(n)
if type(n) == "number" then
return (-number) .. ""
else
return number + 0
end
end
下面是一个简短的Python答案:
def f(n):
m = -n if n % 2 == 0 else n
return m + sign(n)
一般情况
稍微调整一下上面的内容就可以处理我们希望k个自调用否定输入的情况——例如,如果k=3,这意味着g(g(g)n))=-n:
def g(n):
if n % k: return n + sign(n)
return -n + (k - 1) * sign(n)
这是通过将0保留在适当位置并创建长度为2*k的循环来实现的,因此,在任何循环中,n和-n之间的距离为k。具体来说,每个周期如下:
N * k + 1, N * k + 2, ... , N * k + (k - 1), - N * k - 1, ... , - N * k - (k - 1)
或者,为了更容易理解,这里是k=3的示例循环:
1, 2, 3, -1, -2, -3
4, 5, 6, -4, -5, -6
这组循环最大化了在任何以零为中心的机器类型(如有符号int32或有符号int64类型)内工作的输入范围。
兼容范围分析
映射x->f(x)实际上必须形成长度为2*k的循环,其中x=0是特殊情况下的1-长度循环,因为-0=0。因此,一般k的问题是可解的,当且仅当输入-1(补偿0)的范围是2*k的倍数,并且正负范围是相反的。
对于有符号整数表示,我们总是有一个最小的负数,在该范围内没有正的对应项,因此该问题在整个范围内变得不可解决。例如,有符号字符的范围为[-128127],因此在给定范围内f(f(-128))=128是不可能的。