我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
我的答案是正确的。。。50%的时间,所有的时间。
int f (int num) {
if (rand () / (double) RAND_MAX > 0.5)
return ~num + 1;
return num;
}
其他回答
我相信这符合所有要求。没有什么规定参数必须是32位有符号整数,只有你传入的值“n”是。
long long f(long long n)
{
int high_int = n >> 32;
int low_int = n & 0xFFFFFFFF;
if (high_int == 0) {
return 0x100000000LL + low_int;
} else {
return -low_int;
}
}
int f(int n) { static int x = 0; result = -x; x = n; return result; }
这是一个带有否定的单条目FIFO。当然,它不适用于最大负数。
Tcl:
proc f {input} {
if { [string is integer $input] } {
return [list expr [list 0 - $input]]
} else {
return [eval $input]
}
}
% f [f 1]
-1
按照其他一些答案的思路。。。如果它是一个整数,则返回一个返回该数字负数的命令。如果不是数字,请对其求值并返回结果。
const unsigned long Magic = 0x8000000;
unsigned long f(unsigned long n)
{
if(n > Magic )
{
return Magic - n;
}
return n + Magic;
}
0~2^31
我不知道这是否完全正确,但一个简单的标志不起作用吗?在C语言中,使用静态局部变量,我成功地做到了这一点:
int main()
{
int n = -256; // 32-bit signed integer
printf("%d", f(f(n)));
}
int f(int n){
static int x = 0; // not returning negative;
switch(x){
case 0:
x = 1;
return n;
break;
case 1:
x = 0;
return -n;
break;
default:
return -999;
break;
}
}