我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
对于javascript(或其他动态类型语言),可以让函数接受int或对象,并返回另一个。即
function f(n) {
if (n.passed) {
return -n.val;
} else {
return {val:n, passed:1};
}
}
给
js> f(f(10))
-10
js> f(f(-10))
10
或者,您可以在强类型语言中使用重载,尽管这可能会破坏规则
int f(long n) {
return n;
}
long f(int n) {
return -n;
}
其他回答
下面是一个简短的Python答案:
def f(n):
m = -n if n % 2 == 0 else n
return m + sign(n)
一般情况
稍微调整一下上面的内容就可以处理我们希望k个自调用否定输入的情况——例如,如果k=3,这意味着g(g(g)n))=-n:
def g(n):
if n % k: return n + sign(n)
return -n + (k - 1) * sign(n)
这是通过将0保留在适当位置并创建长度为2*k的循环来实现的,因此,在任何循环中,n和-n之间的距离为k。具体来说,每个周期如下:
N * k + 1, N * k + 2, ... , N * k + (k - 1), - N * k - 1, ... , - N * k - (k - 1)
或者,为了更容易理解,这里是k=3的示例循环:
1, 2, 3, -1, -2, -3
4, 5, 6, -4, -5, -6
这组循环最大化了在任何以零为中心的机器类型(如有符号int32或有符号int64类型)内工作的输入范围。
兼容范围分析
映射x->f(x)实际上必须形成长度为2*k的循环,其中x=0是特殊情况下的1-长度循环,因为-0=0。因此,一般k的问题是可解的,当且仅当输入-1(补偿0)的范围是2*k的倍数,并且正负范围是相反的。
对于有符号整数表示,我们总是有一个最小的负数,在该范围内没有正的对应项,因此该问题在整个范围内变得不可解决。例如,有符号字符的范围为[-128127],因此在给定范围内f(f(-128))=128是不可能的。
对于所有32位值(注意,-0是-2147483648)
int rotate(int x)
{
static const int split = INT_MAX / 2 + 1;
static const int negativeSplit = INT_MIN / 2 + 1;
if (x == INT_MAX)
return INT_MIN;
if (x == INT_MIN)
return x + 1;
if (x >= split)
return x + 1 - INT_MIN;
if (x >= 0)
return INT_MAX - x;
if (x >= negativeSplit)
return INT_MIN - x + 1;
return split -(negativeSplit - x);
}
基本上需要将每个-x=>x=>-x循环与y=>-y=>y循环配对。所以我把裂口的两边配对。
例如,对于4位整数:
0 => 7 => -8 => -7 => 0
1 => 6 => -1 => -6 => 1
2 => 5 => -2 => -5 => 2
3 => 4 => -3 => -4 => 3
根据您的平台,某些语言允许您在函数中保持状态。VB.Net,例如:
Function f(ByVal n As Integer) As Integer
Static flag As Integer = -1
flag *= -1
Return n * flag
End Function
IIRC、C++也允许这样做。我怀疑他们正在寻找不同的解决方案。
另一个想法是,由于它们没有定义函数第一次调用的结果,因此可以使用奇数/均匀度来控制是否反转符号:
int f(int n)
{
int sign = n>=0?1:-1;
if (abs(n)%2 == 0)
return ((abs(n)+1)*sign * -1;
else
return (abs(n)-1)*sign;
}
所有偶数的幅度加一,所有奇数的幅度减一。两次调用的结果大小相同,但在一次调用中,我们甚至交换了符号。在某些情况下,这不会起作用(-1,max或min int),但它的效果比迄今为止任何其他建议都要好得多。
:D
boolean inner = true;
int f(int input) {
if(inner) {
inner = false;
return input;
} else {
inner = true;
return -input;
}
}
事实上,这些问题更多的是关于面试官与规范、设计、错误处理、边界案例以及为解决方案选择合适的环境等进行斗争,而不是关于实际解决方案。然而::)
这里的函数是围绕封闭的4循环思想编写的。如果函数f只允许落在有符号的32位整数上,那么上面的各种解决方案都将起作用,除了其他人指出的三个输入范围数。minint永远不会满足函数方程,因此如果这是一个输入,我们将引发一个异常。
在这里,我允许Python函数操作并返回元组或整数。任务规范承认这一点,它只指定函数的两个应用程序应该返回一个与原始对象相等的对象,如果它是int32。(我会询问有关规范的更多细节)
这使得我的轨道可以很好且对称,并且可以覆盖所有输入整数(minint除外)。我最初设想的循环是访问半整数值,但我不想陷入舍入错误。因此是元组表示。这是一种将复杂旋转作为元组隐藏的方式,而不使用复杂的算术机制。
注意,在调用之间不需要保留任何状态,但调用者确实需要允许返回值为元组或int。
def f(x) :
if isinstance(x, tuple) :
# return a number.
if x[0] != 0 :
raise ValueError # make sure the tuple is well formed.
else :
return ( -x[1] )
elif isinstance(x, int ) :
if x == int(-2**31 ):
# This value won't satisfy the functional relation in
# signed 2s complement 32 bit integers.
raise ValueError
else :
# send this integer to a tuple (representing ix)
return( (0,x) )
else :
# not an int or a tuple
raise TypeError
因此,将f应用于37两次得到-37,反之亦然:
>>> x = 37
>>> x = f(x)
>>> x
(0, 37)
>>> x = f(x)
>>> x
-37
>>> x = f(x)
>>> x
(0, -37)
>>> x = f(x)
>>> x
37
将f两次应用于零得到零:
>>> x=0
>>> x = f(x)
>>> x
(0, 0)
>>> x = f(x)
>>> x
0
我们处理一个问题没有解决方案的情况(在int32中):
>>> x = int( -2**31 )
>>> x = f(x)
Traceback (most recent call last):
File "<pyshell#110>", line 1, in <module>
x = f(x)
File "<pyshell#33>", line 13, in f
raise ValueError
ValueError
如果你认为函数通过模拟乘以i的90度旋转打破了“无复杂算术”规则,我们可以通过扭曲旋转来改变这一点。这里元组表示半整数,而不是复数。如果你在数字线上追踪轨道,你会得到满足给定函数关系的非相交循环。
f2: n -> (2 abs(n) +1, 2 sign( n) ) if n is int32, and not minint.
f2: (x, y) -> sign(y) * (x-1) /2 (provided y is \pm 2 and x is not more than 2maxint+1
练习:通过修改f来实现这个f2。还有其他解决方案,例如,中间着落点是有理数而不是半整数。有一个分数模块可能很有用。你需要一个符号函数。
这个练习让我真正体会到了动态类型语言的乐趣。我在C中看不到这样的解决方案。