我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
事实上,我并没有试图给出问题本身的解决方案,但我有几点意见,因为问题表明,提出这个问题是(工作?)面试的一部分:
我会先问“为什么需要这样的函数?这是什么更大的问题?”而不是试图当场解决实际提出的问题。这表明了我是如何思考和解决这样的问题的。谁知道?这甚至可能是在一次采访中首先提出这个问题的真正原因。如果答案是“没关系,假设它是需要的,并告诉我如何设计这个功能。”我会继续这样做。然后,我将编写我将使用的C#测试用例代码(显而易见:从int.MinValue到int.MaxValue的循环,对于该范围内的每个n调用f(f(n)),并检查结果是-n),告诉我将使用测试驱动开发来获得这样的函数。只有当面试官继续要求我解决所提出的问题时,我才真正开始在面试过程中胡乱写下伪代码,试图得到某种答案。然而,如果面试官能说明公司的情况,我真的不认为我会跳下去接受这份工作。。。
哦,这个答案假设面试是针对一个与C#编程相关的职位。如果面试的是与数学相关的职位,那当然是一个愚蠢的答案
其他回答
int j = 0;
void int f(int n)
{
j++;
if(j==2)
{
j = 0;
return -n;
}
return n;
}
:D
Java脚本
function f(n) {
return typeof n === "number" ?
function() {return -n} :
n();
}
Scala中使用隐式转换的一个奇怪且唯一稍微聪明的解决方案:
sealed trait IntWrapper {
val n: Int
}
case class First(n: Int) extends IntWrapper
case class Second(n: Int) extends IntWrapper
case class Last(n: Int) extends IntWrapper
implicit def int2wrapper(n: Int) = First(n)
implicit def wrapper2int(w: IntWrapper) = w.n
def f(n: IntWrapper) = n match {
case First(x) => Second(x)
case Second(x) => Last(-x)
}
我认为这不是一个很好的主意。
斯卡拉:
def f(x: Any): Any = x match {
case i: Int => new { override def hashCode = -i }
case i @ _ => i.hashCode
}
在Java中也是如此:
public static Object f(final Object x) {
if(x instanceof Integer) {
return new Object() {
@Override
public int hashCode() {
return -(Integer)x;
}
};
}
return x.hashCode();
}
int f(const int n) {
static int last_n;
if (n == 0)
return 0;
else if (n == last_n)
return -n;
else
{
last_n = n;
return n;
}
}
哈克,但正确。