我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
我不知道这是否完全正确,但一个简单的标志不起作用吗?在C语言中,使用静态局部变量,我成功地做到了这一点:
int main()
{
int n = -256; // 32-bit signed integer
printf("%d", f(f(n)));
}
int f(int n){
static int x = 0; // not returning negative;
switch(x){
case 0:
x = 1;
return n;
break;
case 1:
x = 0;
return -n;
break;
default:
return -999;
break;
}
}
其他回答
使用复数,您可以有效地将否定数字的任务分为两个步骤:
将n乘以i,得到n*i,n逆时针旋转90°再乘以i,得到-n
最棒的是,您不需要任何特殊的处理代码。只要乘以i就可以了。
但不允许使用复数。因此,您必须使用部分数据范围创建自己的虚拟轴。由于需要的虚(中间)值与初始值一样多,因此只剩下一半的数据范围。
我试图在下图中显示这一点,假设有符号的8位数据。您必须将其缩放为32位整数。初始n的允许范围为-64到+63。下面是函数对正n的作用:
如果n在0..63(初始范围)内,函数调用将添加64,将n映射到范围64..127(中间范围)如果n在64..127(中间范围)内,则函数从64中减去n,将n映射到范围0..-63
对于负n,函数使用中间范围-65..-128。
好问题!
这花了我大约35秒的时间思考并写下:
int f(int n){
static int originalN=0;
if (n!=0)
originalN=n;
return n-originalN;
}
很简单,只需让f返回看起来等于任何整数的值,并且可以从整数转换。
public class Agreeable
{
public static bool operator==(Agreeable c, int n)
{ return true; }
public static bool operator!=(Agreeable c, int n)
{ return false; }
public static implicit operator Agreeable(int n)
{ return new Agreeable(); }
}
class Program
{
public static Agreeable f(Agreeable c)
{ return c; }
static void Main(string[] args)
{
Debug.Assert(f(f(0)) == 0);
Debug.Assert(f(f(5)) == -5);
Debug.Assert(f(f(-5)) == 5);
Debug.Assert(f(f(int.MaxValue)) == -int.MaxValue);
}
}
以下情况如何:
int f (int n)
{
static bool pass = false;
pass = !pass;
return pass? n : -n;
}
你没说他们期望什么样的语言。。。这是一个静态解决方案(Haskell)。这基本上是在搞乱两个最重要的比特:
f :: Int -> Int
f x | (testBit x 30 /= testBit x 31) = negate $ complementBit x 30
| otherwise = complementBit x 30
在动态语言(Python)中要容易得多。只需检查参数是否为数字X,并返回返回-X的lambda:
def f(x):
if isinstance(x,int):
return (lambda: -x)
else:
return x()