我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
void f(int x)
{
Console.WriteLine(string.Format("f(f({0})) == -{0}",x));
}
抱歉,伙计们。。。这太诱人了;)
其他回答
这个Perl解决方案适用于整数、浮点数和字符串。
sub f {
my $n = shift;
return ref($n) ? -$$n : \$n;
}
尝试一些测试数据。
print $_, ' ', f(f($_)), "\n" for -2, 0, 1, 1.1, -3.3, 'foo' '-bar';
输出:
-2 2
0 0
1 -1
1.1 -1.1
-3.3 3.3
foo -foo
-bar +bar
int f( int n ){
return n==0?0:(n&1?n:-n)+(n<0?-1:1);
}
这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。
double f(double n)
{
if (n == (double)(int)n)
return n + 0.5;
else
return -(n - 0.5);
}
这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。
不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。
f#中的简单解决方案(不使用“技巧”)
let rec f n =
if n = 0 then 0
elif n > 0 then
if (f (n - 1) <> n) then n + 1
else -(n - 1)
else
if (f (-(n - 1)) = n) then n - 1
else -(n + 1)
C#表示2^32-1个数字的范围,所有整数32(int32.MinValue除外)
Func<int, int> f = n =>
n < 0
? (n & (1 << 30)) == (1 << 30) ? (n ^ (1 << 30)) : - (n | (1 << 30))
: (n & (1 << 30)) == (1 << 30) ? -(n ^ (1 << 30)) : (n | (1 << 30));
Console.WriteLine(f(f(Int32.MinValue + 1))); // -2147483648 + 1
for (int i = -3; i <= 3 ; i++)
Console.WriteLine(f(f(i)));
Console.WriteLine(f(f(Int32.MaxValue))); // 2147483647
打印:
2147483647
3
2
1
0
-1
-2
-3
-2147483647