我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

f(x)=在二维笛卡尔坐标系中围绕原点逆时针旋转90度的点(x)。仅一个数字x的输入被假定为(x,0),并且具有y=0的输出被提供为单个数字x。

object f: (object) x {
    if (x.length == 1)
        x = (x, 0)
    swap = x[0]
    x[1] = x[0]
    x[0] = -swap
    if (x[1] == 0)
        x = x[0]
    return x

其他回答

我承认我会作弊,但还是符合要求。这是编程魔术,而不是数学。它适用于整个范围,-2^31除外。

int f(int n)
{
    static bool eFlag = false; // Only executed once
    eFlag = !eFlag;
    return eFlag?-n:n;
}
void f(int x)
{
     Console.WriteLine(string.Format("f(f({0})) == -{0}",x));
}

抱歉,伙计们。。。这太诱人了;)

根据您的平台,某些语言允许您在函数中保持状态。VB.Net,例如:

Function f(ByVal n As Integer) As Integer
    Static flag As Integer = -1
    flag *= -1

    Return n * flag
End Function

IIRC、C++也允许这样做。我怀疑他们正在寻找不同的解决方案。

另一个想法是,由于它们没有定义函数第一次调用的结果,因此可以使用奇数/均匀度来控制是否反转符号:

int f(int n)
{
   int sign = n>=0?1:-1;
   if (abs(n)%2 == 0)
      return ((abs(n)+1)*sign * -1;
   else
      return (abs(n)-1)*sign;
}

所有偶数的幅度加一,所有奇数的幅度减一。两次调用的结果大小相同,但在一次调用中,我们甚至交换了符号。在某些情况下,这不会起作用(-1,max或min int),但它的效果比迄今为止任何其他建议都要好得多。

我还没有看其他答案,我假设已经彻底讨论了按位技术。

我想我会在C++中想出一些邪恶的东西,希望不会上当受骗:

struct ImplicitlyConvertibleToInt
{
    operator int () const { return 0; }
};

int f(const ImplicitlyConvertibleToInt &) { return 0; }

ImplicitlyConvertibleToInt f(int & n)
{
    n = 0; // The problem specification didn't say n was const
    return ImplicitlyConvertibleToInt();
}

整个ImplicitlyConvertableToInt类型和重载是必需的,因为临时变量不能绑定到非常量引用。

当然,现在来看它,f(n)是否在-n之前执行是不确定的。

对于这种程度的邪恶,也许一个更好的解决方案是:

struct ComparesTrueToInt
{
    ComparesTrueToInt(int) { } // implicit construction from int
};
bool operator == (ComparesTrueToInt, int) const { return true; }

ComparesTrueToInt f(ComparesTrueToInt ct) { return ComparesTrueToInt(); }

容易的:

function f($n) {
   if ($n%2 == 0) return ($n+1)*-1;
   else return ($n-1);
}