我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。
红宝石:
def f( n )
return 0 unless n != 0
( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
其他回答
将n转换为符号和幅度表示;添加范围的1/4;转换回。
#define STYPE int
STYPE sign_bit = (unsigned STYPE) 1 << ( sizeof ( STYPE ) * 8 - 1 );
STYPE f ( STYPE f )
{
unsigned STYPE smf = f > 0 ? f : -f | sign_bit;
smf += sign_bit >> 1;
return smf & sign_bit ? -( smf & ~sign_bit ) : smf;
}
这个怎么样?
int nasty(int input)
{
return input + INT_MAX/2;
}
怎么样
int f(int n)
{
return -abs(n);
}
f(x)=在二维笛卡尔坐标系中围绕原点逆时针旋转90度的点(x)。仅一个数字x的输入被假定为(x,0),并且具有y=0的输出被提供为单个数字x。
object f: (object) x {
if (x.length == 1)
x = (x, 0)
swap = x[0]
x[1] = x[0]
x[0] = -swap
if (x[1] == 0)
x = x[0]
return x
简单的Python解决方案之所以成为可能,是因为对f(x)应该输出的内容没有限制,只有f(f(x)):
def f(x):
return (isinstance(x, tuple) and -x[0]) or (x,)