我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。

红宝石:

def f( n )
  return 0 unless n != 0 
  ( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end

其他回答

我希望你改变2个最高有效位。

00.... => 01.... => 10.....

01.... => 10.... => 11.....

10.... => 11.... => 00.....

11.... => 00.... => 01.....

正如你所看到的,这只是一个补充,省去了进位。

我是怎么得到答案的?我的第一个想法就是需要对称。4转回到我开始的地方。起初我想,这是20比特的格雷码。然后我觉得标准二进制就足够了。

这个问题并没有说明函数f的输入类型和返回值必须是什么(至少不是你给出的方式)。。。

…只是当n是32位整数时,f(f(n))=-n

那么,怎么样

Int64 f(Int64 n)
{
    return(n > Int32.MaxValue ? 
        -(n - 4L * Int32.MaxValue):
        n + 4L * Int32.MaxValue);
}

如果n是32位整数,则语句f(f(n))==-n将为真。

显然,这种方法可以扩展到更大范围的数字。。。

斯卡拉:

def f(x: Any): Any = x match {
  case i: Int => new { override def hashCode = -i }
  case i @ _  => i.hashCode
}

在Java中也是如此:

public static Object f(final Object x) {
  if(x instanceof Integer) {
    return new Object() {
      @Override 
      public int hashCode() {
        return -(Integer)x;
      }
    };
  }
  return x.hashCode();
}

我有另一个解决方案,它可以在一半时间内工作:

def f(x):
    if random.randrange(0, 2):
        return -x
    return x

这个Perl解决方案适用于整数、浮点数和字符串。

sub f {
    my $n = shift;
    return ref($n) ? -$$n : \$n;
}

尝试一些测试数据。

print $_, ' ', f(f($_)), "\n" for -2, 0, 1, 1.1, -3.3, 'foo' '-bar';

输出:

-2 2
0 0
1 -1
1.1 -1.1
-3.3 3.3
foo -foo
-bar +bar