我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

C++中的另一个作弊解决方案是运算符重载。

struct func {
    int n;
    func operator()(int k) { n = -k; return *this; }
    int operator()(const func &inst) { return inst.n; }
} f;

其他回答

另一种方法是将状态保持在一位,并在负数的情况下翻转它,注意二进制表示。。。限制为2^29

整数ffn(整数n){

    n = n ^ (1 << 30); //flip the bit
    if (n>0)// if negative then there's a two's complement
    {
        if (n & (1<<30))
        {
            return n;
        }
        else
        {
            return -n;
        }
    }
    else
    {
        if (n & (1<<30))
        {
            return -n;
        }
        else
        {
            return n;
        }
    }


}

MIN_INT不会失败:

int f(n) { return n < 0 ? -abs(n + 1) : -(abs(n) + 1); }

JavaScript单行:

function f(n) { return ((f.f = !f.f) * 2 - 1) * n; }

我试着打高尔夫,这是罗德里克·查普曼的回答。

无分支:74个字符

int f(int i){return(-((i&1)<<1)|1)*i-(-((i>>>31)<<1)|1)*(((i|-i)>>31)&1);}

带有分支,Java风格:58个字符

int f(int i){return i==0?0:(((i&1)==0?i:-i)+(i>0?-1:1));}

带分支,C样式:52个字符

int f(int i){return i?(((i&1)?-i:i)+(i>0?-1:1)):0;}

经过快速但有效的基准测试后,分支版本在我的机器上的速度提高了33%。(正数和负数的随机数据集,足够的重复,并防止编译器在预热时优化代码。)考虑到非分支版本中的操作数量以及可能的良好分支预测,这并不奇怪,因为函数被调用了两次:f(f(i))。当我将基准更改为度量:f(I)时,分支版本只快28%。我认为这证明了分支预测在第一种情况下确实有一些好处。更多证明:当使用f(f(f)(f(i)))进行测试时,分支版本的速度会快42%。

根据微软/谷歌的面试官通常在面试中提出的问题,我认为提问者指的是一种创新、轻量级、简单的解决方案,它将使用按位操作,而不是那些复杂的高级答案。

灵感来自@eipipuz的回答,我编写了这个C++函数(但没有运行它):

int32_t f(int32_t n){
    int32_t temp = n & 00111111111111111111111111111111;
    x = n >> 30;
    x++;
    x = x << 30;
    return x | temp;
}

它将n的最左边的两位存储在x中,将x加1,然后再次将其替换为n的最左侧的两位。

如果我们继续以另一个f(n)作为参数n运行f(n,则最左边的两个位将如下旋转:

00 --> 01 --> 10 --> 11 --> 00 ...

请注意,最右边的30位不变。8位整数示例:

示例1:

>f(00001111)=01001111>f(01001111)=10001111[这是原始值的负值,00001111]

示例2:

>f(11101010)=00101010>f(00101010)=01101010[这是原始值11101010的负值]