我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
C++中的另一个作弊解决方案是运算符重载。
struct func {
int n;
func operator()(int k) { n = -k; return *this; }
int operator()(const func &inst) { return inst.n; }
} f;
其他回答
f(n) { return -1 * abs(n) }
如何处理溢出问题?还是我错过了重点?
我有另一个解决方案,它可以在一半时间内工作:
def f(x):
if random.randrange(0, 2):
return -x
return x
int f(int n)
{
static long counter=0;
counter++;
if(counter%2==0)
return -n;
else
return n;
}
好问题!
这花了我大约35秒的时间思考并写下:
int f(int n){
static int originalN=0;
if (n!=0)
originalN=n;
return n-originalN;
}
Clojure解决方案:
(defmacro f [n] (if (list? n) `(- ~n) n))
也适用于任何大小的正整数和负整数、双整数和比率!