我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
我可以想象,使用第31位作为虚(I)位将是一种支持一半总范围的方法。
其他回答
这个怎么样(C语言):
int f(int n)
{
static int t = 1;
return (t = t ? 0 : 1) ? -n : n;
}
刚刚试过,而且
f(f(1000))
回报-1000
f(f(-1000))
返回1000
这是正确的还是我没有抓住重点?
这适用于1073741823至1073741822范围:
int F(int n)
{
if(n < 0)
{
if(n > -1073741824)
n = -1073741824 + n;
else n = -(n + 1073741824);
}
else
{
if(n < 1073741823)
n = 1073741823 + n;
else n = -(n - 1073741823);
}
return n;
}
它的工作原理是获取32位有符号整数的可用范围并将其一分为二。函数的第一次迭代将n自身置于该范围之外。第二次迭代检查它是否在该范围之外-如果是,则将其放回该范围内,但使其为负值。
这实际上是一种保留关于值n的额外“位”信息的方法。
对于javascript(或其他动态类型语言),可以让函数接受int或对象,并返回另一个。即
function f(n) {
if (n.passed) {
return -n.val;
} else {
return {val:n, passed:1};
}
}
给
js> f(f(10))
-10
js> f(f(-10))
10
或者,您可以在强类型语言中使用重载,尽管这可能会破坏规则
int f(long n) {
return n;
}
long f(int n) {
return -n;
}
适用于n=[0..2^31-1]
int f(int n) {
if (n & (1 << 31)) // highest bit set?
return -(n & ~(1 << 31)); // return negative of original n
else
return n | (1 << 31); // return n with highest bit set
}
我希望你改变2个最高有效位。
00.... => 01.... => 10.....
01.... => 10.... => 11.....
10.... => 11.... => 00.....
11.... => 00.... => 01.....
正如你所看到的,这只是一个补充,省去了进位。
我是怎么得到答案的?我的第一个想法就是需要对称。4转回到我开始的地方。起初我想,这是20比特的格雷码。然后我觉得标准二进制就足够了。