我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

它通过保存状态来作弊,但它有效,将操作分成两部分:-n=(~n+1)对于整数

int f(int n) {
    static int a = 1;
    a = !a;
    if (a) {
        return (~n);
    } else {
        return (n+1);
    }
}

其他回答

在PHP中

function f($n) {
    if(is_int($n)) {
        return (string)$n;
    }
    else {
        return (int)$n * (-1);
    }
}

我相信你能理解其他语言的这种方法的精神。为了让不使用弱类型语言的人更清楚,我明确地将其转换回int。对于某些语言,您必须重载该函数。

这个解决方案的妙处在于,无论您是从字符串还是整数开始,它都是有效的,并且在返回f(n)时不会明显改变任何内容。

在我看来,面试官在问,“这位应聘者是否知道如何标记数据以供以后操作”,以及“这位应聘人员是否知道如何在最少更改数据的情况下标记数据?”你可以使用双精度、字符串或任何其他你想使用的数据类型来实现这一点。

少于50个字符(C#)

int f(int n) { return (n <= 0) ? n : f(-n); }

或更容易阅读:

static int f(int n) { 
  if (n <= 0)
    return n;
  else 
    return f(-n);
}

要测试

static void Main(string[] args) {
    for (int n = int.MinValue; n < int.MaxValue; n+=1) {
        Console.Out.WriteLine("Value: " + n + " Result: " + f(f(n)));
    }
}

它有效(假设我正确理解问题)

我的答案是正确的。。。50%的时间,所有的时间。

int f (int num) {
    if (rand () / (double) RAND_MAX > 0.5)
         return ~num + 1;
    return num;
}

怎么样:

f(n) = sign(n) - (-1)ⁿ * n

在Python中:

def f(n): 
    if n == 0: return 0
    if n >= 0:
        if n % 2 == 1: 
            return n + 1
        else: 
            return -1 * (n - 1)
    else:
        if n % 2 == 1:
            return n - 1
        else:
            return -1 * (n + 1)

Python自动将整数提升为任意长度的longs。在其他语言中,最大的正整数将溢出,因此它将适用于除该整数之外的所有整数。


为了使其适用于实数,您需要替换(-1)中的nⁿ 如果n>0,则为{上限(n);如果n<0},则为下限(n)。

在C#中(适用于任何双精度,溢出情况除外):

static double F(double n)
{
    if (n == 0) return 0;
    
    if (n < 0)
        return ((long)Math.Ceiling(n) % 2 == 0) ? (n + 1) : (-1 * (n - 1));
    else
        return ((long)Math.Floor(n) % 2 == 0) ? (n - 1) : (-1 * (n + 1));
}

记住你的上一个状态不是一个足够好的答案吗?

int f (int n)
{
    //if count 
    static int count = 0;

    if (count == 0)
        { 
            count = 1;
            return n;
        }

    if (n == 0)
        return 0;
    else if (n > 0)
    {
        count = 0;
        return abs(n)*(-1);
    } 
    else
    {
        count = 0;
        return abs(n);
    }
}

int main()
{
    int n = 42;
    std::cout << f(f(n))
}