我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

有些类似,但我只是想写下我的第一个想法(用C++)

#include <vector>

vector<int>* f(int n)
{
  returnVector = new vector<int>();
  returnVector->push_back(n);
  return returnVector;
}

int f(vector<int>* n) { return -(n->at(0)); }

仅使用重载使f(f(n))实际调用两个不同的函数

其他回答

return x ^ ((x%2) ? 1 : -INT_MAX);
void f(int x)
{
     Console.WriteLine(string.Format("f(f({0})) == -{0}",x));
}

抱歉,伙计们。。。这太诱人了;)

由于C++中的重载:

double f(int var)
{
 return double(var);
} 

int f(double var)
{
 return -int(var);
}

int main(){
int n(42);
std::cout<<f(f(n));
}

我认为最大的可能范围是暗示模块化算术解决方案。在一些模基M中,有一个数,当平方等于M-1(等于-1)。例如,如果M=13,5*5=25,25 mod 13=12(=-1)总之,这里有一些M=2**32-3的python代码。

def f(x):
    m=2**32-3;
    halfm=m//2;
    i_mod_m=1849436465
    if abs( x ) >halfm:
        raise "too big"
    if x<0:
        x+=m
    x=(i_mod_m*x) % m
    if (x>halfm):
        x-=m
    return x;

注意,有3个值不适用于2**31-1、-(2**31-1)和-(2*#31)

另一种利用短路的Javascript解决方案。

​function f(n) {return n.inv || {inv:-n}}

f(f(1)) => -1
f(f(-1)) => 1