我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

事实上,这些问题更多的是关于面试官与规范、设计、错误处理、边界案例以及为解决方案选择合适的环境等进行斗争,而不是关于实际解决方案。然而::)

这里的函数是围绕封闭的4循环思想编写的。如果函数f只允许落在有符号的32位整数上,那么上面的各种解决方案都将起作用,除了其他人指出的三个输入范围数。minint永远不会满足函数方程,因此如果这是一个输入,我们将引发一个异常。

在这里,我允许Python函数操作并返回元组或整数。任务规范承认这一点,它只指定函数的两个应用程序应该返回一个与原始对象相等的对象,如果它是int32。(我会询问有关规范的更多细节)

这使得我的轨道可以很好且对称,并且可以覆盖所有输入整数(minint除外)。我最初设想的循环是访问半整数值,但我不想陷入舍入错误。因此是元组表示。这是一种将复杂旋转作为元组隐藏的方式,而不使用复杂的算术机制。

注意,在调用之间不需要保留任何状态,但调用者确实需要允许返回值为元组或int。

def f(x) :
  if isinstance(x, tuple) :
      # return a number.
      if x[0] != 0 :
        raise ValueError  # make sure the tuple is well formed.
      else :
        return ( -x[1] )

  elif isinstance(x, int ) :
    if x == int(-2**31 ):
      # This value won't satisfy the functional relation in
      # signed 2s complement 32 bit integers.
      raise ValueError
    else :
      # send this integer to a tuple (representing ix)
      return( (0,x) )
  else :
    # not an int or a tuple
    raise TypeError

因此,将f应用于37两次得到-37,反之亦然:

>>> x = 37
>>> x = f(x)
>>> x
(0, 37)
>>> x = f(x)
>>> x
-37
>>> x = f(x)
>>> x
(0, -37)
>>> x = f(x)
>>> x
37

将f两次应用于零得到零:

>>> x=0
>>> x = f(x)
>>> x
(0, 0)
>>> x = f(x)
>>> x
0

我们处理一个问题没有解决方案的情况(在int32中):

>>> x = int( -2**31 )
>>> x = f(x)

Traceback (most recent call last):
  File "<pyshell#110>", line 1, in <module>
    x = f(x)
  File "<pyshell#33>", line 13, in f
    raise ValueError
ValueError

如果你认为函数通过模拟乘以i的90度旋转打破了“无复杂算术”规则,我们可以通过扭曲旋转来改变这一点。这里元组表示半整数,而不是复数。如果你在数字线上追踪轨道,你会得到满足给定函数关系的非相交循环。

f2: n -> (2 abs(n) +1, 2 sign( n) ) if n is int32, and not minint.
f2: (x, y) -> sign(y) * (x-1) /2  (provided y is \pm 2 and x is not more than 2maxint+1

练习:通过修改f来实现这个f2。还有其他解决方案,例如,中间着落点是有理数而不是半整数。有一个分数模块可能很有用。你需要一个符号函数。

这个练习让我真正体会到了动态类型语言的乐趣。我在C中看不到这样的解决方案。

其他回答

Clojure解决方案:

(defmacro f [n]
  (if (list? n) `(- ~n) n))

也适用于任何大小的正整数和负整数、双整数和比率!

f(n) { return IsWholeNumber(n)? 1/n : -1/n }

:D

boolean inner = true;

int f(int input) {
   if(inner) {
      inner = false;
      return input;
   } else {
      inner = true;
      return -input;
   }
}

没有人说它必须是无国籍的。

int32 f(int32 x) {
    static bool idempotent = false;
    if (!idempotent) {
        idempotent = true;
        return -x;
    } else {
        return x;
    }
}

作弊,但不如很多例子。更糟糕的是,查看堆栈以查看调用者的地址是否为-f,但这将更具可移植性(虽然不是线程安全的……线程安全版本将使用TLS)。更邪恶的是:

int32 f (int32 x) {
    static int32 answer = -x;
    return answer;
}

当然,对于MIN_INT32的情况,这两种方法都不太有效,但除非允许返回更宽的类型,否则对此您几乎无能为力。

作为一名数学家,我想分享我对这个有趣问题的看法。我认为我有最有效的解决方案。

如果我没记错的话,只需翻转第一位,就可以将有符号的32位整数取反。例如,如果n=1001 1101 1110 1011 1110 0000 1110 1010,则-n=0001 1101 11101 1011 11100 0000 1110 010。

那么,我们如何定义一个函数f,它接受一个带符号的32位整数,并返回另一个有符号的32位数整数,该函数的属性是:接受两次f与翻转第一位相同?

让我重新表述这个问题,而不提整数之类的算术概念。

我们如何定义一个函数f,它接受长度为32的一系列0和1,并返回长度相同的一系列零和1,同时具有两次接受f与翻转第一位相同的性质?

观察:如果你能回答32位情况的上述问题,那么你也可以回答64位情况、100位情况等。你只需将f应用于前32位。

现在,如果你能回答2位案例的问题,哇!

是的,改变前2位就足够了。

这是伪代码

1. take n, which is a signed 32-bit integer.
2. swap the first bit and the second bit.
3. flip the first bit.
4. return the result.

备注:步骤2和步骤3可以概括为(a,b)-->(-b,a)。看起来很眼熟?这应该会让你想起平面的90度旋转以及乘以-1的平方根。

如果我只是单独展示了伪代码,而没有冗长的前奏,那么它看起来就像脱口而出的兔子,我想解释一下我是如何得到解决方案的。