我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这个怎么样(C语言):

int f(int n)
{
    static int t = 1;
    return (t = t ? 0 : 1) ? -n : n;
}

刚刚试过,而且

f(f(1000)) 

回报-1000

f(f(-1000)) 

返回1000

这是正确的还是我没有抓住重点?

其他回答

你没说他们期望什么样的语言。。。这是一个静态解决方案(Haskell)。这基本上是在搞乱两个最重要的比特:

f :: Int -> Int
f x | (testBit x 30 /= testBit x 31) = negate $ complementBit x 30
    | otherwise = complementBit x 30

在动态语言(Python)中要容易得多。只需检查参数是否为数字X,并返回返回-X的lambda:

def f(x):
   if isinstance(x,int):
      return (lambda: -x)
   else:
      return x()

MIN_INT不会失败:

int f(n) { return n < 0 ? -abs(n + 1) : -(abs(n) + 1); }
int f(int n)
{
  static long counter=0;
  counter++;
  if(counter%2==0)
    return -n;
  else
    return n;
}

C++

struct Value
{
  int value;
  Value(int v) : value(v) {}
  operator int () { return -value; }
};


Value f(Value input)
{
  return input;
}

这个想法已经在其他答案中使用过,但我把它融入了Python的一行:

def f(n):
    return str(n) if type(n) == int else -int(n)