我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
JavaScript单行:
function f(n) { return ((f.f = !f.f) * 2 - 1) * n; }
其他回答
我希望你改变2个最高有效位。
00.... => 01.... => 10.....
01.... => 10.... => 11.....
10.... => 11.... => 00.....
11.... => 00.... => 01.....
正如你所看到的,这只是一个补充,省去了进位。
我是怎么得到答案的?我的第一个想法就是需要对称。4转回到我开始的地方。起初我想,这是20比特的格雷码。然后我觉得标准二进制就足够了。
C#重载:
string f(int i) {
return i.ToString();
}
int f(string s) {
return Int32.Parse(s) * -1;
}
Or
object f(object o) {
if (o.ToString.StartsWith("s"))
return Int32.Parse(s.Substring(1)) * -1;
return "s" + i.ToString();
}
容易的:
function f($n) {
if ($n%2 == 0) return ($n+1)*-1;
else return ($n-1);
}
记住你的上一个状态不是一个足够好的答案吗?
int f (int n)
{
//if count
static int count = 0;
if (count == 0)
{
count = 1;
return n;
}
if (n == 0)
return 0;
else if (n > 0)
{
count = 0;
return abs(n)*(-1);
}
else
{
count = 0;
return abs(n);
}
}
int main()
{
int n = 42;
std::cout << f(f(n))
}
这将在非常广泛的数字范围内发挥作用:
static int f(int n)
{
int lastBit = int.MaxValue;
lastBit++;
int secondLastBit = lastBit >> 1;
int tuple = lastBit | secondLastBit;
if ((n & tuple) == tuple)
return n + lastBit;
if ((n & tuple) == 0)
return n + lastBit;
return -(n + lastBit);
}
我最初的方法是使用最后一位作为检查位,以了解我们在第一次或第二次调用中的位置。基本上,我会在第一次调用后将此位设置为1,以向第二次调用发出第一次调用已经通过的信号。但是,这种方法被负数所击败,负数的最后一位在第一次调用期间已经到达1。
同样的理论适用于大多数负数的倒数第二位。但是,通常发生的情况是,大多数情况下,最后一位和第二位是相同的。它们要么都是负数的1,要么都是正数的0。
所以我的最后一个方法是检查它们是否都是1或都是0,这意味着在大多数情况下这是第一次调用。如果最后一位与第二个最后一位不同,那么我假设我们在第二次调用,然后简单地重新反转最后一位。显然,对于使用最后两位的非常大的数字来说,这不起作用。但是,它再次适用于非常广泛的数字。