我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

MIN_INT不会失败:

int f(n) { return n < 0 ? -abs(n + 1) : -(abs(n) + 1); }

其他回答

x86 asm(AT&T风格):

; input %edi
; output %eax
; clobbered regs: %ecx, %edx
f:
    testl   %edi, %edi
    je  .zero

    movl    %edi, %eax
    movl    $1, %ecx
    movl    %edi, %edx
    andl    $1, %eax
    addl    %eax, %eax
    subl    %eax, %ecx
    xorl    %eax, %eax
    testl   %edi, %edi
    setg    %al
    shrl    $31, %edx
    subl    %edx, %eax
    imull   %ecx, %eax
    subl    %eax, %edi
    movl    %edi, %eax
    imull   %ecx, %eax
.zero:
    xorl    %eax, %eax
    ret

代码已检查,所有可能的32位整数都已通过,错误为-2147483647(下溢)。

f#中的简单解决方案(不使用“技巧”)

let rec f n =
    if n = 0 then 0
    elif n > 0 then
        if (f (n - 1) <> n) then n + 1
        else -(n - 1)
    else
        if (f (-(n - 1)) = n) then n - 1
        else -(n + 1) 

以下情况如何:

int f (int n)
{
    static bool pass = false;
    pass = !pass;
    return pass? n : -n;
}
#include <cmath>

int f(int n)
{
    static int count = 0;
    return ::cos(M_PI * count++) * n;
}

我承认我会作弊,但还是符合要求。这是编程魔术,而不是数学。它适用于整个范围,-2^31除外。

int f(int n)
{
    static bool eFlag = false; // Only executed once
    eFlag = !eFlag;
    return eFlag?-n:n;
}