我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
除int.MaxValue和int.MinValue以外的工作
public static int f(int x)
{
if (x == 0) return 0;
if ((x % 2) != 0)
return x * -1 + (-1 *x) / (Math.Abs(x));
else
return x - x / (Math.Abs(x));
}
其他回答
Scala中使用隐式转换的一个奇怪且唯一稍微聪明的解决方案:
sealed trait IntWrapper {
val n: Int
}
case class First(n: Int) extends IntWrapper
case class Second(n: Int) extends IntWrapper
case class Last(n: Int) extends IntWrapper
implicit def int2wrapper(n: Int) = First(n)
implicit def wrapper2int(w: IntWrapper) = w.n
def f(n: IntWrapper) = n match {
case First(x) => Second(x)
case Second(x) => Last(-x)
}
我认为这不是一个很好的主意。
Tcl:
proc f {input} {
if { [string is integer $input] } {
return [list expr [list 0 - $input]]
} else {
return [eval $input]
}
}
% f [f 1]
-1
按照其他一些答案的思路。。。如果它是一个整数,则返回一个返回该数字负数的命令。如果不是数字,请对其求值并返回结果。
从来没有人说过f(x)必须是同一类型。
def f(x):
if type(x) == list:
return -x[0]
return [x]
f(2) => [2]
f(f(2)) => -2
少于50个字符(C#)
int f(int n) { return (n <= 0) ? n : f(-n); }
或更容易阅读:
static int f(int n) {
if (n <= 0)
return n;
else
return f(-n);
}
要测试
static void Main(string[] args) {
for (int n = int.MinValue; n < int.MaxValue; n+=1) {
Console.Out.WriteLine("Value: " + n + " Result: " + f(f(n)));
}
}
它有效(假设我正确理解问题)
在awk中,由于几乎没有任何信息被传递,因此必须求助于允许将状态信息作为函数返回的一部分传递的方法,而不会危及传递内容的可用性:
jot - -5 5 | mawk 'function _(__,___) {
return (__~(___=" ")) \
\
? substr("",sub("^[ ]?[+- ]*",\
substr(" -",__~__,index("_"___,___)-\
(__~"[-]")),__))\
(__~"[-]"?"":___)__\
: (+__<-__?___:(___)___)__
} BEGIN { CONVFMT=OFMT="%.17g"
} {
print "orig", +(__=$(__<__))<-__?__:" "__,
"f(n)....", _(__),_(_(__)),_(_(_(__))),
_(_(_(_(__)))), _(_(_(_(_(__)))))
}' |gcat -n | lgp3 5
1 orig -5 f(n).... -5 5 -5 5 -5
2 orig -4 f(n).... -4 4 -4 4 -4
3 orig -3 f(n).... -3 3 -3 3 -3
4 orig -2 f(n).... -2 2 -2 2 -2
5 orig -1 f(n).... -1 1 -1 1 -1
6 orig 0 f(n).... 0 -0 0 -0 0
7 orig 1 f(n).... 1 -1 1 -1 1
8 orig 2 f(n).... 2 -2 2 -2 2
9 orig 3 f(n).... 3 -3 3 -3 3
10 orig 4 f(n).... 4 -4 4 -4 4
11 orig 5 f(n).... 5 -5 5 -5 5
因此,这样做的限制是,只有整数或浮点值已经是字符串格式,可以在没有风险的情况下使用,因为额外的ASCII空间\040作为状态信息
这种方法的优点是
它愿意为您提供“负零”,对于绝对值小于2^53的整数,简单地添加加号,即+f(f(_))函数调用本身将具有隐式代表您完成类型铸造,结果值将再次为数字对于大整数,只需减去()任何前导空格轻松处理大整数,而不会丢失精度从类型转换为双精度浮点
`
1 orig -99999999999999999999999999999999
f(n)....
-99999999999999999999999999999999
99999999999999999999999999999999
-99999999999999999999999999999999
99999999999999999999999999999999
-99999999999999999999999999999999
2 orig -1239999999999999999999999999999
f(n).... -1239999999999999999999999999999
1239999999999999999999999999999
-1239999999999999999999999999999
1239999999999999999999999999999
-1239999999999999999999999999999`