我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

另一种利用短路的Javascript解决方案。

​function f(n) {return n.inv || {inv:-n}}

f(f(1)) => -1
f(f(-1)) => 1

其他回答

在awk中,由于几乎没有任何信息被传递,因此必须求助于允许将状态信息作为函数返回的一部分传递的方法,而不会危及传递内容的可用性:

jot - -5 5 | mawk 'function _(__,___) { 

     return (__~(___=" ")) \
      \
      ? substr("",sub("^[ ]?[+- ]*",\
        substr(" -",__~__,index("_"___,___)-\
              (__~"[-]")),__))\
            (__~"[-]"?"":___)__\
      : (+__<-__?___:(___)___)__ 

  } BEGIN { CONVFMT=OFMT="%.17g" 
  } { 
      print "orig",           +(__=$(__<__))<-__?__:" "__,
            "f(n)....",        _(__),_(_(__)),_(_(_(__))),
                         _(_(_(_(__)))), _(_(_(_(_(__))))) 

  }' |gcat -n | lgp3 5 

 1  orig -5 f(n)....  -5   5  -5   5  -5
 2  orig -4 f(n)....  -4   4  -4   4  -4
 3  orig -3 f(n)....  -3   3  -3   3  -3
 4  orig -2 f(n)....  -2   2  -2   2  -2
 5  orig -1 f(n)....  -1   1  -1   1  -1

 6  orig  0 f(n)....   0  -0   0  -0   0
 7  orig  1 f(n)....   1  -1   1  -1   1
 8  orig  2 f(n)....   2  -2   2  -2   2
 9  orig  3 f(n)....   3  -3   3  -3   3
10  orig  4 f(n)....   4  -4   4  -4   4

11  orig  5 f(n)....   5  -5   5  -5   5

因此,这样做的限制是,只有整数或浮点值已经是字符串格式,可以在没有风险的情况下使用,因为额外的ASCII空间\040作为状态信息

这种方法的优点是

它愿意为您提供“负零”,对于绝对值小于2^53的整数,简单地添加加号,即+f(f(_))函数调用本身将具有隐式代表您完成类型铸造,结果值将再次为数字对于大整数,只需减去()任何前导空格轻松处理大整数,而不会丢失精度从类型转换为双精度浮点

`

    1   orig -99999999999999999999999999999999 
        f(n).... 
             -99999999999999999999999999999999   
              99999999999999999999999999999999
             -99999999999999999999999999999999   
              99999999999999999999999999999999  
             -99999999999999999999999999999999

 2  orig      -1239999999999999999999999999999 
    f(n)....  -1239999999999999999999999999999                   
               1239999999999999999999999999999
              -1239999999999999999999999999999
               1239999999999999999999999999999
              -1239999999999999999999999999999`

怎么样

int f(int n)
{
    return -abs(n);
}

这里有一个证明,如果不使用额外信息(除了32位的int),那么对于所有数字,这样的函数都不可能存在:

我们必须使f(0)=0。(证明:假设f(0)=x,则f(x)=f(f(0))=-0=0。现在,-x=f(f(x))=f(0)=x,这意味着x=0。)

此外,对于任何x和y,假设f(x)=y。那么我们希望f(y)=-x。并且f(f(y))=-y=>f(-x)=-y。总结一下:如果f(x)=y,那么f(-x)=-y,f(y)=-x,f(-y)=x。

因此,我们需要将除0之外的所有整数分成4个集合,但我们有奇数个这样的整数;不仅如此,如果我们去掉没有正对应的整数,我们仍然有2(mod4)个数。

如果我们去掉剩下的2个最大数(通过abs值),我们可以得到函数:

int sign(int n)
{
    if(n>0)
        return 1;
    else 
        return -1;
}

int f(int n)
{
    if(n==0) return 0;
    switch(abs(n)%2)
    {
        case 1:
             return sign(n)*(abs(n)+1);
        case 0:
             return -sign(n)*(abs(n)-1);
    }
}   

当然,另一种选择是不遵守0,并获得我们删除的2个数字作为奖励。(但这只是一个愚蠢的假设。)

对于所有32位值(注意,-0是-2147483648)

int rotate(int x)
{
    static const int split = INT_MAX / 2 + 1;
    static const int negativeSplit = INT_MIN / 2 + 1;

    if (x == INT_MAX)
        return INT_MIN;
    if (x == INT_MIN)
        return x + 1;

    if (x >= split)
        return x + 1 - INT_MIN;
    if (x >= 0)
        return INT_MAX - x;
    if (x >= negativeSplit)
        return INT_MIN - x + 1;
    return split -(negativeSplit - x);
}

基本上需要将每个-x=>x=>-x循环与y=>-y=>y循环配对。所以我把裂口的两边配对。

例如,对于4位整数:

0 => 7 => -8 => -7 => 0
1 => 6 => -1 => -6 => 1
2 => 5 => -2 => -5 => 2
3 => 4 => -3 => -4 => 3

我希望你改变2个最高有效位。

00.... => 01.... => 10.....

01.... => 10.... => 11.....

10.... => 11.... => 00.....

11.... => 00.... => 01.....

正如你所看到的,这只是一个补充,省去了进位。

我是怎么得到答案的?我的第一个想法就是需要对称。4转回到我开始的地方。起初我想,这是20比特的格雷码。然后我觉得标准二进制就足够了。