我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

另一种利用短路的Javascript解决方案。

​function f(n) {return n.inv || {inv:-n}}

f(f(1)) => -1
f(f(-1)) => 1

其他回答

在awk中,由于几乎没有任何信息被传递,因此必须求助于允许将状态信息作为函数返回的一部分传递的方法,而不会危及传递内容的可用性:

jot - -5 5 | mawk 'function _(__,___) { 

     return (__~(___=" ")) \
      \
      ? substr("",sub("^[ ]?[+- ]*",\
        substr(" -",__~__,index("_"___,___)-\
              (__~"[-]")),__))\
            (__~"[-]"?"":___)__\
      : (+__<-__?___:(___)___)__ 

  } BEGIN { CONVFMT=OFMT="%.17g" 
  } { 
      print "orig",           +(__=$(__<__))<-__?__:" "__,
            "f(n)....",        _(__),_(_(__)),_(_(_(__))),
                         _(_(_(_(__)))), _(_(_(_(_(__))))) 

  }' |gcat -n | lgp3 5 

 1  orig -5 f(n)....  -5   5  -5   5  -5
 2  orig -4 f(n)....  -4   4  -4   4  -4
 3  orig -3 f(n)....  -3   3  -3   3  -3
 4  orig -2 f(n)....  -2   2  -2   2  -2
 5  orig -1 f(n)....  -1   1  -1   1  -1

 6  orig  0 f(n)....   0  -0   0  -0   0
 7  orig  1 f(n)....   1  -1   1  -1   1
 8  orig  2 f(n)....   2  -2   2  -2   2
 9  orig  3 f(n)....   3  -3   3  -3   3
10  orig  4 f(n)....   4  -4   4  -4   4

11  orig  5 f(n)....   5  -5   5  -5   5

因此,这样做的限制是,只有整数或浮点值已经是字符串格式,可以在没有风险的情况下使用,因为额外的ASCII空间\040作为状态信息

这种方法的优点是

它愿意为您提供“负零”,对于绝对值小于2^53的整数,简单地添加加号,即+f(f(_))函数调用本身将具有隐式代表您完成类型铸造,结果值将再次为数字对于大整数,只需减去()任何前导空格轻松处理大整数,而不会丢失精度从类型转换为双精度浮点

`

    1   orig -99999999999999999999999999999999 
        f(n).... 
             -99999999999999999999999999999999   
              99999999999999999999999999999999
             -99999999999999999999999999999999   
              99999999999999999999999999999999  
             -99999999999999999999999999999999

 2  orig      -1239999999999999999999999999999 
    f(n)....  -1239999999999999999999999999999                   
               1239999999999999999999999999999
              -1239999999999999999999999999999
               1239999999999999999999999999999
              -1239999999999999999999999999999`

这也是一个解决方案(但我们稍微改变了一下规则):

def f(n):
    if isinstance(n,int):
        return str(n)
    else:
        return -int(n)
f(n) { return IsWholeNumber(n)? 1/n : -1/n }

事实上,我并没有试图给出问题本身的解决方案,但我有几点意见,因为问题表明,提出这个问题是(工作?)面试的一部分:

我会先问“为什么需要这样的函数?这是什么更大的问题?”而不是试图当场解决实际提出的问题。这表明了我是如何思考和解决这样的问题的。谁知道?这甚至可能是在一次采访中首先提出这个问题的真正原因。如果答案是“没关系,假设它是需要的,并告诉我如何设计这个功能。”我会继续这样做。然后,我将编写我将使用的C#测试用例代码(显而易见:从int.MinValue到int.MaxValue的循环,对于该范围内的每个n调用f(f(n)),并检查结果是-n),告诉我将使用测试驱动开发来获得这样的函数。只有当面试官继续要求我解决所提出的问题时,我才真正开始在面试过程中胡乱写下伪代码,试图得到某种答案。然而,如果面试官能说明公司的情况,我真的不认为我会跳下去接受这份工作。。。

哦,这个答案假设面试是针对一个与C#编程相关的职位。如果面试的是与数学相关的职位,那当然是一个愚蠢的答案

我相信这符合所有要求。没有什么规定参数必须是32位有符号整数,只有你传入的值“n”是。

long long f(long long n)
{
    int high_int = n >> 32;
    int low_int  = n & 0xFFFFFFFF;

    if (high_int == 0) {
        return 0x100000000LL + low_int;
    } else {
        return -low_int;
    }
}