我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
这个问题并没有说明函数f的输入类型和返回值必须是什么(至少不是你给出的方式)。。。
…只是当n是32位整数时,f(f(n))=-n
那么,怎么样
Int64 f(Int64 n)
{
return(n > Int32.MaxValue ?
-(n - 4L * Int32.MaxValue):
n + 4L * Int32.MaxValue);
}
如果n是32位整数,则语句f(f(n))==-n将为真。
显然,这种方法可以扩展到更大范围的数字。。。
其他回答
这适用于1073741823至1073741822范围:
int F(int n)
{
if(n < 0)
{
if(n > -1073741824)
n = -1073741824 + n;
else n = -(n + 1073741824);
}
else
{
if(n < 1073741823)
n = 1073741823 + n;
else n = -(n - 1073741823);
}
return n;
}
它的工作原理是获取32位有符号整数的可用范围并将其一分为二。函数的第一次迭代将n自身置于该范围之外。第二次迭代检查它是否在该范围之外-如果是,则将其放回该范围内,但使其为负值。
这实际上是一种保留关于值n的额外“位”信息的方法。
我可以想象,使用第31位作为虚(I)位将是一种支持一半总范围的方法。
Scala中使用隐式转换的一个奇怪且唯一稍微聪明的解决方案:
sealed trait IntWrapper {
val n: Int
}
case class First(n: Int) extends IntWrapper
case class Second(n: Int) extends IntWrapper
case class Last(n: Int) extends IntWrapper
implicit def int2wrapper(n: Int) = First(n)
implicit def wrapper2int(w: IntWrapper) = w.n
def f(n: IntWrapper) = n match {
case First(x) => Second(x)
case Second(x) => Last(-x)
}
我认为这不是一个很好的主意。
以下情况如何:
int f (int n)
{
static bool pass = false;
pass = !pass;
return pass? n : -n;
}
PHP,不使用全局变量:
function f($num) {
static $mem;
$answer = $num-$mem;
if ($mem == 0) {
$mem = $num*2;
} else {
$mem = 0;
}
return $answer;
}
适用于整数、浮点数和数字字符串!
只是意识到这会做一些不必要的工作,但是,不管怎样