我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这个问题并没有说明函数f的输入类型和返回值必须是什么(至少不是你给出的方式)。。。

…只是当n是32位整数时,f(f(n))=-n

那么,怎么样

Int64 f(Int64 n)
{
    return(n > Int32.MaxValue ? 
        -(n - 4L * Int32.MaxValue):
        n + 4L * Int32.MaxValue);
}

如果n是32位整数,则语句f(f(n))==-n将为真。

显然,这种方法可以扩展到更大范围的数字。。。

其他回答

x86 asm(AT&T风格):

; input %edi
; output %eax
; clobbered regs: %ecx, %edx
f:
    testl   %edi, %edi
    je  .zero

    movl    %edi, %eax
    movl    $1, %ecx
    movl    %edi, %edx
    andl    $1, %eax
    addl    %eax, %eax
    subl    %eax, %ecx
    xorl    %eax, %eax
    testl   %edi, %edi
    setg    %al
    shrl    $31, %edx
    subl    %edx, %eax
    imull   %ecx, %eax
    subl    %eax, %edi
    movl    %edi, %eax
    imull   %ecx, %eax
.zero:
    xorl    %eax, %eax
    ret

代码已检查,所有可能的32位整数都已通过,错误为-2147483647(下溢)。

这个怎么样?

int nasty(int input)
{
    return input + INT_MAX/2;
}

创建许多解的一种方法是注意,如果我们将整数划分为两个集合S和R

那么我们可以如下创建f:

如果x在R中,则f(x)=g(x)

如果x在S中,则f(x)=-invg(x)

其中invg(g(x))=x,所以invg是g的逆函数。

上面提到的第一个解决方案是分区R=偶数,R=奇数,g(x)=x+1。

我们可以取任意两个无限集合T,P s.T T+U=整数集合,取s=T+(-T),R=U+(-U)。

然后-S=S和-R=R通过它们的定义,我们可以将g取为从S到R的任何1-1对应关系,这必须存在,因为这两个集合都是无限的和可数的。

因此,这将为我们提供许多解决方案,但并非所有解决方案都可以编程,因为它们不会被有限地定义。

例如:

R=可被3整除的数字,S=不可被3除的数字。

然后我们取g(6r)=3r+1,g(6r+3)=3r+2。

MIN_INT不会失败:

int f(n) { return n < 0 ? -abs(n + 1) : -(abs(n) + 1); }

好问题!

这花了我大约35秒的时间思考并写下:

int f(int n){
    static int originalN=0;
    if (n!=0)
        originalN=n;
    return n-originalN;
}