我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

没有人说它必须是无国籍的。

int32 f(int32 x) {
    static bool idempotent = false;
    if (!idempotent) {
        idempotent = true;
        return -x;
    } else {
        return x;
    }
}

作弊,但不如很多例子。更糟糕的是,查看堆栈以查看调用者的地址是否为-f,但这将更具可移植性(虽然不是线程安全的……线程安全版本将使用TLS)。更邪恶的是:

int32 f (int32 x) {
    static int32 answer = -x;
    return answer;
}

当然,对于MIN_INT32的情况,这两种方法都不太有效,但除非允许返回更宽的类型,否则对此您几乎无能为力。

其他回答

C++

struct Value
{
  int value;
  Value(int v) : value(v) {}
  operator int () { return -value; }
};


Value f(Value input)
{
  return input;
}

这个是Python中的。适用于n的所有负值:

f = abs

很简单,只需让f返回看起来等于任何整数的值,并且可以从整数转换。

public class Agreeable
{
    public static bool operator==(Agreeable c, int n)
        { return true; }

    public static bool operator!=(Agreeable c, int n)
        { return false; }

    public static implicit operator Agreeable(int n)
        { return new Agreeable(); }
}

class Program
{
    public static Agreeable f(Agreeable c)
        { return c; }

    static void Main(string[] args)
    {
        Debug.Assert(f(f(0)) == 0);
        Debug.Assert(f(f(5)) == -5);
        Debug.Assert(f(f(-5)) == 5);
        Debug.Assert(f(f(int.MaxValue)) == -int.MaxValue);
    }
}

另一个作弊解决方案。我们使用允许运算符重载的语言。然后我们让f(x)返回重载==的值,以始终返回true。这似乎与问题描述相符,但显然违背了谜题的精神。

Ruby示例:

class Cheat
  def ==(n)
     true
  end
end

def f(n)
  Cheat.new
end

这给了我们:

>> f(f(1)) == -1
=> true

而且(不太令人惊讶)

>> f(f(1)) == "hello world"
=> true

使用复数,您可以有效地将否定数字的任务分为两个步骤:

将n乘以i,得到n*i,n逆时针旋转90°再乘以i,得到-n

最棒的是,您不需要任何特殊的处理代码。只要乘以i就可以了。

但不允许使用复数。因此,您必须使用部分数据范围创建自己的虚拟轴。由于需要的虚(中间)值与初始值一样多,因此只剩下一半的数据范围。

我试图在下图中显示这一点,假设有符号的8位数据。您必须将其缩放为32位整数。初始n的允许范围为-64到+63。下面是函数对正n的作用:

如果n在0..63(初始范围)内,函数调用将添加64,将n映射到范围64..127(中间范围)如果n在64..127(中间范围)内,则函数从64中减去n,将n映射到范围0..-63

对于负n,函数使用中间范围-65..-128。