我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
int f(int n) { static int x = 0; result = -x; x = n; return result; }
这是一个带有否定的单条目FIFO。当然,它不适用于最大负数。
其他回答
number f( number n)
{
static count(0);
if(count > 0) return -n;
return n;
}
f(n) = n
f(f(n)) = f(n) = -n
Java脚本
function f(n) {
return typeof n === "number" ?
function() {return -n} :
n();
}
C++中的另一个作弊解决方案是运算符重载。
struct func {
int n;
func operator()(int k) { n = -k; return *this; }
int operator()(const func &inst) { return inst.n; }
} f;
另一种方法是将状态保持在一位,并在负数的情况下翻转它,注意二进制表示。。。限制为2^29
整数ffn(整数n){
n = n ^ (1 << 30); //flip the bit
if (n>0)// if negative then there's a two's complement
{
if (n & (1<<30))
{
return n;
}
else
{
return -n;
}
}
else
{
if (n & (1<<30))
{
return -n;
}
else
{
return n;
}
}
}
C#重载:
string f(int i) {
return i.ToString();
}
int f(string s) {
return Int32.Parse(s) * -1;
}
Or
object f(object o) {
if (o.ToString.StartsWith("s"))
return Int32.Parse(s.Substring(1)) * -1;
return "s" + i.ToString();
}