我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这也是一个解决方案(但我们稍微改变了一下规则):

def f(n):
    if isinstance(n,int):
        return str(n)
    else:
        return -int(n)

其他回答

我试着打高尔夫,这是罗德里克·查普曼的回答。

无分支:74个字符

int f(int i){return(-((i&1)<<1)|1)*i-(-((i>>>31)<<1)|1)*(((i|-i)>>31)&1);}

带有分支,Java风格:58个字符

int f(int i){return i==0?0:(((i&1)==0?i:-i)+(i>0?-1:1));}

带分支,C样式:52个字符

int f(int i){return i?(((i&1)?-i:i)+(i>0?-1:1)):0;}

经过快速但有效的基准测试后,分支版本在我的机器上的速度提高了33%。(正数和负数的随机数据集,足够的重复,并防止编译器在预热时优化代码。)考虑到非分支版本中的操作数量以及可能的良好分支预测,这并不奇怪,因为函数被调用了两次:f(f(i))。当我将基准更改为度量:f(I)时,分支版本只快28%。我认为这证明了分支预测在第一种情况下确实有一些好处。更多证明:当使用f(f(f)(f(i)))进行测试时,分支版本的速度会快42%。

#include <cmath>

int f(int n)
{
    static int count = 0;
    return ::cos(M_PI * count++) * n;
}

Java脚本

function f(n)  { 
        return typeof n === "number" ? 
        function() {return -n} : 
        n();
}
int f(int n)
{
  static long counter=0;
  counter++;
  if(counter%2==0)
    return -n;
  else
    return n;
}

使用问题中给出的信息,您可以

从2-完成转换为符号位表示如果设置了最后一位,则翻转符号位和最后一位;否则,只翻转最后一位转换回2-完成。

所以你基本上是奇数->偶数->奇数或偶数->奇数->偶数,只对偶数更改符号。唯一不适用的数字是-2^31

代码:

function f(x) {
  var neg = x < 0;
  x = Math.abs(x) ^ 1;
  if (x & 1) {
    neg = !neg;
  }
  return neg ? -x : x;
}