我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这也是一个解决方案(但我们稍微改变了一下规则):

def f(n):
    if isinstance(n,int):
        return str(n)
    else:
        return -int(n)

其他回答

或者,您可以滥用预处理器:

#define f(n) (f##n)
#define ff(n) -n

int main()
{
  int n = -42;
  cout << "f(f(" << n << ")) = " << f(f(n)) << endl;
}

C++中的另一个作弊解决方案是运算符重载。

struct func {
    int n;
    func operator()(int k) { n = -k; return *this; }
    int operator()(const func &inst) { return inst.n; }
} f;

这个想法已经在其他答案中使用过,但我把它融入了Python的一行:

def f(n):
    return str(n) if type(n) == int else -int(n)
number f( number n)
{
  static count(0);
  if(count > 0) return -n;
  return n;
}

f(n) = n

f(f(n)) = f(n) = -n

这个怎么样?

int nasty(int input)
{
    return input + INT_MAX/2;
}