我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
作为一名数学家,我想分享我对这个有趣问题的看法。我认为我有最有效的解决方案。
如果我没记错的话,只需翻转第一位,就可以将有符号的32位整数取反。例如,如果n=1001 1101 1110 1011 1110 0000 1110 1010,则-n=0001 1101 11101 1011 11100 0000 1110 010。
那么,我们如何定义一个函数f,它接受一个带符号的32位整数,并返回另一个有符号的32位数整数,该函数的属性是:接受两次f与翻转第一位相同?
让我重新表述这个问题,而不提整数之类的算术概念。
我们如何定义一个函数f,它接受长度为32的一系列0和1,并返回长度相同的一系列零和1,同时具有两次接受f与翻转第一位相同的性质?
观察:如果你能回答32位情况的上述问题,那么你也可以回答64位情况、100位情况等。你只需将f应用于前32位。
现在,如果你能回答2位案例的问题,哇!
是的,改变前2位就足够了。
这是伪代码
1. take n, which is a signed 32-bit integer.
2. swap the first bit and the second bit.
3. flip the first bit.
4. return the result.
备注:步骤2和步骤3可以概括为(a,b)-->(-b,a)。看起来很眼熟?这应该会让你想起平面的90度旋转以及乘以-1的平方根。
如果我只是单独展示了伪代码,而没有冗长的前奏,那么它看起来就像脱口而出的兔子,我想解释一下我是如何得到解决方案的。
其他回答
这将在非常广泛的数字范围内发挥作用:
static int f(int n)
{
int lastBit = int.MaxValue;
lastBit++;
int secondLastBit = lastBit >> 1;
int tuple = lastBit | secondLastBit;
if ((n & tuple) == tuple)
return n + lastBit;
if ((n & tuple) == 0)
return n + lastBit;
return -(n + lastBit);
}
我最初的方法是使用最后一位作为检查位,以了解我们在第一次或第二次调用中的位置。基本上,我会在第一次调用后将此位设置为1,以向第二次调用发出第一次调用已经通过的信号。但是,这种方法被负数所击败,负数的最后一位在第一次调用期间已经到达1。
同样的理论适用于大多数负数的倒数第二位。但是,通常发生的情况是,大多数情况下,最后一位和第二位是相同的。它们要么都是负数的1,要么都是正数的0。
所以我的最后一个方法是检查它们是否都是1或都是0,这意味着在大多数情况下这是第一次调用。如果最后一位与第二个最后一位不同,那么我假设我们在第二次调用,然后简单地重新反转最后一位。显然,对于使用最后两位的非常大的数字来说,这不起作用。但是,它再次适用于非常广泛的数字。
int func(int a)
{
static int p = 0;
int ret = a;
if ( p ) ret *= -1;
p ^= 1;
return ret;
}
int f(int n) { static int x = 0; result = -x; x = n; return result; }
这是一个带有否定的单条目FIFO。当然,它不适用于最大负数。
用咖啡脚本打高尔夫:
f = (n)-> -n[0] or [n]
SQL Server中的解决方案
create function dbo.fn_fo(@num int) -- OUTER FUNCTION
RETURNS int
AS
begin
RETURN @num * -1
end
GO
create function dbo.fn_fi(@num int) -- INNER FUNCTION
RETURNS int
AS
begin
RETURN @num * -1
end
GO
declare @num AS int = -42
SELECT dbo.fn_fo(dbo.fn_fi(@num)) -- Gives (-42)