我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

作为一名数学家,我想分享我对这个有趣问题的看法。我认为我有最有效的解决方案。

如果我没记错的话,只需翻转第一位,就可以将有符号的32位整数取反。例如,如果n=1001 1101 1110 1011 1110 0000 1110 1010,则-n=0001 1101 11101 1011 11100 0000 1110 010。

那么,我们如何定义一个函数f,它接受一个带符号的32位整数,并返回另一个有符号的32位数整数,该函数的属性是:接受两次f与翻转第一位相同?

让我重新表述这个问题,而不提整数之类的算术概念。

我们如何定义一个函数f,它接受长度为32的一系列0和1,并返回长度相同的一系列零和1,同时具有两次接受f与翻转第一位相同的性质?

观察:如果你能回答32位情况的上述问题,那么你也可以回答64位情况、100位情况等。你只需将f应用于前32位。

现在,如果你能回答2位案例的问题,哇!

是的,改变前2位就足够了。

这是伪代码

1. take n, which is a signed 32-bit integer.
2. swap the first bit and the second bit.
3. flip the first bit.
4. return the result.

备注:步骤2和步骤3可以概括为(a,b)-->(-b,a)。看起来很眼熟?这应该会让你想起平面的90度旋转以及乘以-1的平方根。

如果我只是单独展示了伪代码,而没有冗长的前奏,那么它看起来就像脱口而出的兔子,我想解释一下我是如何得到解决方案的。

其他回答

除int.MaxValue和int.MinValue以外的工作

    public static int f(int x)
    {

        if (x == 0) return 0;

        if ((x % 2) != 0)
            return x * -1 + (-1 *x) / (Math.Abs(x));
        else
            return x - x / (Math.Abs(x));
    }

x86 asm(AT&T风格):

; input %edi
; output %eax
; clobbered regs: %ecx, %edx
f:
    testl   %edi, %edi
    je  .zero

    movl    %edi, %eax
    movl    $1, %ecx
    movl    %edi, %edx
    andl    $1, %eax
    addl    %eax, %eax
    subl    %eax, %ecx
    xorl    %eax, %eax
    testl   %edi, %edi
    setg    %al
    shrl    $31, %edx
    subl    %edx, %eax
    imull   %ecx, %eax
    subl    %eax, %edi
    movl    %edi, %eax
    imull   %ecx, %eax
.zero:
    xorl    %eax, %eax
    ret

代码已检查,所有可能的32位整数都已通过,错误为-2147483647(下溢)。

简单的Python解决方案之所以成为可能,是因为对f(x)应该输出的内容没有限制,只有f(f(x)):

def f(x):
    return (isinstance(x, tuple) and -x[0]) or (x,)
int f(int n) {
    return ((n>0)? -1 : 1) * abs(n);
}
#include <cmath>

int f(int n)
{
    static int count = 0;
    return ::cos(M_PI * count++) * n;
}